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Abstract

We address three key aspects of optimal portfolio construction: expected return, variance-

covariance modeling and optimization in presence of cardinality constraints. On expected return

modeling, we extend the self-excited point process framework to model conditional arrival inten-

sities of bid and ask side market orders of listed stocks. The cross-excitation of market orders

is modeled explicitly such that the ask side market order size and bid side probability weighted

order book cumulative volume can a�ect the ask side order intensity, and vice versa. Di�erent

variations of the framework are estimated by using method of maximum likelihood estimation,

based on a recursive application of the log-likelihood functions derived in this thesis. Results

indicate that the self-excited point process framework is able to capture a signi�cant amount of

the underlying trading dynamics of market orders, both in-sample and out-of-sample.

A new framework is introduced, Realized GARCH, for the joint modeling of returns and

realized measures of volatility. A key feature is a measurement equation that relates the realized

measure to the conditional variance of returns. The measurement equation facilitates a simple

modeling of the dependence between returns and future volatility. Realized GARCH models

with a linear or log-linear speci�cation have many attractive features. They are parsimonious,

simple to estimate, and imply an ARMA structure for the conditional variance and the realized

measure. An empirical application with DJIA stocks and an exchange traded index fund shows

that a simple Realized GARCH structure leads to substantial improvements in the empirical �t

over standard GARCH models.

Finally we describe a novel algorithm to obtain the solution of the optimal portfolio prob-

lem with NP-hard cardinality constraints. The algorithm is based on a local relaxation that

exploits the inherent structure of the objective function. It solves a sequence of small, local,

quadratic-programs by �rst projecting asset returns onto a reduced metric space, followed by

clustering in this space to identify sub-groups of assets that best accentuate a suitable measure

of similarity amongst di�erent assets. The algorithm can either be cold started using the cen-

troids of initial clusters or be warm started based on the output of a previous result. Empirical

result, using baskets of up to 3,000 stocks and with di�erent cardinality constraints, indicates

that the algorithm is able to achieve signi�cant performance gain over a sophisticated branch-

and-cut method. One key application of this local relaxation algorithm is in dealing with large

scale cardinality constrained portfolio optimization under tight time constraint, such as for the

purpose of index tracking or index arbitrage at high frequency.
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1 Introduction

Portfolio optimization in the classical mean-variance optimal sense is a well studied topic (see

Markowitz, 1952, 1987; Sharpe, 1964). It is relevant at all trading frequencies, whenever the agent

has an exponential utility function, and whenever multiple return forecasts are aggregated into a

portfolio. In high frequency �nance, when transaction cost plays a key part in the eventual return

of a strategy and when speed of transaction depends on the number of stocks in the portfolio, we

need a framework to form a mean-variance optimal portfolio that bounds the total number of names

to execute. Ultimately, the problem we aim to solve is a cardinality-constrained quadratic program

(CCQP) with linear constraints, which can be expressed as

min
x,x̃

f (x) = c>x+ 1
2x
>Hx (1.1)

s.t. Ax = b (1.2)

e>x̃ = K (1.3)

where c, x, e, x̃ ∈ Rn×1, H ∈ Rn×n, A ∈ Rm×n, b ∈ Rm×1, m ≤ n and e is a vector of 1's. Let x∗ be
our solution set, the indicator function in (1.3) is given by

x̃i =

1 xi ∈ x∗

0 o.w..

The three key components in the objective function are the prediction of expected return, c, and

variance-covariance matrix, H, and the speci�c algorithm for solving the optimization problem. This

thesis addresses these three key aspects of optimal portfolio construction.

Based on Shek (2010), we investigate a self-excited point process approach to forecast expected

return. Until recently, the majority of time series analyses related to �nancial data has been carried

out using regularly spaced price data, with the goal of modeling and forecasting key distributional

characteristics of future returns, such as expected mean and variance. These time series data mainly

consist of daily closing prices, where comprehensive data are widely available for a large set of asset

classes. With the recent rapid development of high-frequency �nance, the focus has shifted to intra-

day tick data, which record every transaction during market hours, and come with irregularly spaced

time-stamps. We could resample the dataset and apply the same analyses as before, or we could try

to explore additional information that the inter-arrival times may convey in terms of likely future

trade direction. In order to properly take into account these irregular occurrences of transactions,

we can adopt the framework of point process. In a doubly stochastic framework (see Bartlett, 1963),

both the counting process and the driving intensity are stochastic. A point process is called self-

excited if the current intensity of the events is determined by events in the past, see Hawkes (1971).

It is widely accepted and observed that volatility of price returns tends to cluster. That is, a period

of elevated volatility is likely to be followed by periods of similar levels of volatility. Trade arrivals

also exhibit such clustering e�ect, for example a buy order is likely to be followed closely by another

buy order. These orders tend to cluster in time. There has been a growing amount of literature

on the application of point process to model inter-arrival trade durations, see Bowsher (2003) for a

1
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comprehensive survey of the latest modeling frameworks. The proposed framework extends previous

work on the application of self-excited process to model high frequency �nancial data. The extension

comes in the form of a marked version of the process in order to take into account trade size in�uence

on the underlying arrival intensity. In addition, by incorporating information from the limit order

book (LOB), the proposed framework takes into account a measure of supply-demand imbalance of

the market by parametrize the underlying based intensity as a function of this imbalance measure.

The intensities, λ1t, λ2t for market bid and ask side orders, respectively, are given by the following,
λ1t = µ1v̄2t + 1

w̄1

∑
ti<t

α11w1ie
−β11(t−ti) + 1

w̄2

∑
tj<t

α12w2je
−β12(t−tj)

λ2t = µ2v̄1t + 1
w̄2

∑
tj<t

α22w2je
−β22(t−tj) + 1

w̄1

∑
ti<t

α21w1ie
−β21(t−ti),

where ti and tj are Ft-adapted jump times for bid and ask side market orders, respectively. This

exponential parametrization is in reasonable agreement with empirical �ndings. The probability

weighted volume for bid side orders (similarly for ask side orders), v̄1t = v̄ (t, τ, L; 1) is de�ned

below,

v̄ (t, τ, L; i) =
1∑

i,l vt,l;i

L∑
l=0

vt,l;ipl,i,τ ,

where pl,i,τ = P ( tf < t+ τ | l, i) is the probability of an order of type i ∈ {1, 2} submitted at layer

l getting completely �lled at time tf , which is within τ seconds from order submission at time t.

vt,l;i is the queue size at time t, at the l-th layer and on side i of the limit order book. Di�erent

variations of the framework are estimated by using method of maximum likelihood estimation, using

a recursive application of the log-likelihood functions derived in this thesis. Results indicate that

the self-excited point process framework is able to capture a signi�cant amount of the underlying

trading dynamics of market orders, both in-sample and out-of-sample.

Based on Hansen, Huang, and Shek (2011), we explore an innovative framework, Realized

GARCH, that incorporates high frequency information in making better covariance forecast, by

jointly model returns and realized measures of volatility. The latent volatility process of asset re-

turns are relevant to a wide variety of applications, such as option pricing and risk management,

and generalized autoregressive conditional heteroskedasticity (GARCH) models are widely used to

model the dynamic features of volatility. This has sparked the development of a large number of au-

toregressive conditional heteroskedasticity (ARCH) and GARCH models since the seminal paper by

Engle (1982). Within the GARCH framework, the key element is the speci�cation for the conditional

variance. GARCH models utilize daily returns (typically squared returns) to extract information

about the current level of volatility, and this information is used to form expectations about the next

period's volatility. A single return is unable to o�er more than a weak signal about the current level

of volatility. The implication is that GARCH models are poorly suited for situations where volatility

changes rapidly to a new level, because the GARCH model is slow at �catching up� and it will take

many periods for the conditional variance (implied by the GARCH model) to reach its new level.

High-frequency �nancial data are now readily available and the literature has recently introduced

a number of realized measures of volatility, including the realized variance, the bipower variation,

the realized kernel, and many related quantities, see Andersen and Bollerslev (1998), Andersen,

Bollerslev, Diebold, and Labys (2001b), Barndor�-Nielsen and Shephard (2002), Barndor�-Nielsen

2
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and Shephard (2004), Barndor�-Nielsen, Hansen, Lunde, and Shephard (2008b), Hansen and Horel

(2010), and references therein. Any of these measures is far more informative about the current

level of volatility than is the squared return. This makes realized measures very useful for modeling

and forecasting future volatility. Estimating a GARCH-X model that includes a realized measure

in the GARCH equation provides a good illustration of this point. Such models were estimated by

Engle (2002b) who used the realized variance. Within the GARCH-X framework no e�ort is paid to

explain the variation in the realized measures, so these GARCH-X models are partial (incomplete)

models that have nothing to say about returns and volatility beyond a single period into the future.

Engle and Gallo (2006) introduced the �rst �complete� model in this context. Their model speci�es

a GARCH structure for each of the realized measures, so that an additional latent volatility process

is introduced for each realized measure in the model. The model by Engle and Gallo (2006) is known

as the multiplicative error model (MEM), because it builds on the MEM structure proposed by Engle

(2002b). Another complete model is the HEAVY model by Shephard and Sheppard (2010) that,

in terms of its mathematical structure, is nested in the MEM framework. Unlike the traditional

GARCH models, these models operate with multiple latent volatility processes. For instance, the

MEM by Engle and Gallo (2006) has a total of three latent volatility processes and the HEAVY

model by Shephard and Sheppard (2010) has two (or more) latent volatility processes. Within the

context of stochastic volatility models, Takahashi et al. (2009) were the �rst to propose a joint model

for returns and a realized measure of volatility. The Realized GARCH framework introduced here

combines a GARCH structure for returns with a model for realized measures of volatility. Models

within our framework are called Realized GARCH models, a name that transpires both the objective

of these models (similar to GARCH) and the means by which these models operate (using realized

measures). A Realized GARCH model maintains the single volatility-factor structure of the tradi-

tional GARCH framework. Instead of introducing additional latent factors, we take advantage of the

natural relationship between the realized measure and the conditional variance, and we will argue

that there is no need for additional factors in many cases. Consider the case where the realized mea-

sure, xt, is a consistent estimator of the integrated variance. Now write the integrated variance as a

linear combination of the conditional variance and a random innovation, and we obtain the relation

xt = ξ + ϕht + εt. We do not impose ϕ = 1 so that this approach also applies when the realized

measure is compute from a shorter period (e.g. 6.5 hours) than the interval that the conditional

variance refers to (e.g. 24 hours). Having a measurement equation that ties xt to ht has several

advantages. First, it induces a simple and tractable structure that is similar to that of the classical

GARCH framework. For instance, the conditional variance, the realized measure, and the squared

return, all have autoregressive moving average (ARMA) representations. Second, the measurement

equation makes it simple to model the dependence between shocks to returns and shocks to volatil-

ity, that is commonly referred to as a leverage e�ect. Third, the measurement equation induces a

structure that is convenient for prediction. Once the model is estimated it is simple to compute

distributional predictions for the future path of volatilities and returns, and these predictions do not

require us to introduce auxiliary future values for the realized measure. To illustrate our framework

and �x ideas, consider a canonical version of the Realized GARCH model that will be referred to as

the RealGARCH(1,1) model with a linear speci�cation. This model is given by the following three

3
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equations

rt =
√
htzt,

ht = ω + βht−1 + γxt−1,

xt = ξ + ϕht + τ(zt) + ut,

where rt is the return, zt ∼ iid(0, 1), ut ∼ iid(0, σ2
u), and ht = var(rt|Ft−1) with the �ltration

de�ned as Ft = σ(rt, xt, rt−1, xt−1, . . .). The last equation relates the observed realized measure to

the latent volatility, and is therefore called the measurement equation. It is easy to verify that ht is

an autoregressive process of order one, ht = µ+ πht−1 + wt−1, where µ = ω + γξ, π = β + ϕγ, and

wt = γτ(zt)+γut. So it is natural to adopt the nomenclature of GARCH models. The inclusion of the

realized measure in the model and the fact that xt has an ARMA representation motivate the name

Realized GARCH. A simple, yet potent speci�cation of the leverage function is τ(z) = τ1z+τ2(z2−1),
which can generate an asymmetric response in volatility to return shocks. The simple structure of

the model makes the model easy to estimate and interpret, and leads to a tractable analysis of the

quasi maximum likelihood estimator. We apply the Realized GARCH framework to the DJIA stocks

and an exchange traded index fund, SPY. We �nd, in all cases, substantial improvements in the log-

likelihood function when benchmarked to a standard GARCH model. Substantial improvements are

found in-sample as well as out-of-sample. The empirical evidence also strongly favors inclusion of

the leverage function, and the parameter estimates are remarkably similar across stocks.

Based on Murray and Shek (2011), we combined the result from the �rst and second parts

of the thesis and form the inputs to a cardinally constrained portfolio optimization problem, and

explore two proposed innovative ways to solve this NP -hard problem in the most e�cient way. The

presence of cardinality constraint changes the complexity of the problem from that of an inequality

constrained convex quadratic program (QP) to that of a non-convex QP in which the feasible region

is a mixed-integer set with potentially many local optima. Shaw et al. (2008) has reduced a 3-

partitioning problem to a CCQP, hence establishing the NP -hardness of the problem. For these

type of problems, even at modest sizes, computationally e�ective algorithms do not exist and, up

until recently, there has been relatively little work presented in the literature. One of the current state

of the art commercial solvers, the built-in mixed integer QP (MIQP) solver in CPLEX, uses branch-

and-cut algorithm together with heuristics for solving large scale problems. The branch-and-cut

algorithm is a combination of a branch-and-bound algorithm which uses a sophisticated divide and

conquer approach to solve the problems by building a pruned tree, and a cutting plan method that

improves the relaxation of the sub-problems to more closely approximate the integer programming

problem. The proposed global smoothing algorithm is a prototype algorithm that introduces penalty

and global smoothing functions to the original problem, then iteratively increase the penalty factor

while decrease the amount of smoothing introduced, until convergence. The proposed local relaxation

algorithm solves a sequence of small, local, quadratic-programs by �rst projecting asset returns onto

a reduced metric space, followed by clustering in this space to identify sub-groups of assets that best

accentuate a suitable measure of similarity amongst di�erent assets. The algorithm can either be cold

started using the centroids of initial clusters or be warm started based on the output of a previous

result. Empirical result, using baskets of up to 3,000 stocks and with di�erent cardinality constraints,

indicates that the proposed local relaxation algorithm is able to achieve signi�cant performance gain
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over a sophisticated branch-and-cut method. One key application of this algorithm is in dealing

with large scale cardinality constrained portfolio optimization under tight time constraint, such as

for the purpose of index tracking or index arbitrage at high frequency.

For the empirical parts of this thesis, ideally we would like to use a single dataset that covers

the necessary sample durations for the di�erent components of our overall framework. However,

availability of data that spans all dimensions (order book detail, transaction prices, tick sampling)

is limited at the time of writing, which necessitates parts of the empirical study using di�erent

datasets. Throughout the thesis it will be made precise which dataset is used for empirical work in

each section.

This thesis is organized as follows. Section 2 focuses on estimation and prediction of the co-

variance matrix, H, by incorporating high frequency asset return information. The key model is

RealGARCH(1,1). Section 3 focuses on a prediction framework for the expected return, c, again

by using high frequency information contents, in the form of tick-by-tick return series and limit

order book dynamics. The key model here is a multivariate self-excited stochastic intensity process.

Section 4 combines the frameworks from Sections 2 and 3 to give the distributional parameters in

the objective function for the �nal optimization problem. This �nal chapter introduces two new

approaches, global smoothing and local relaxation with factor projection, to solve the underlying

cardinality constrained optimization problem.
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2 Covariance Matrix Estimation and Prediction

For the most part of this section, our focus will be on the single variate case, i.e. on the variance

of some random process. The extension from single to multivariate, hence the covariance matrix,

will be introduced towards the end of the section, after �xing some key ideas and addressing the

challenges of univariate variance estimation and prediction.

2.1 Literature Review

De�ne a �ltered probability space (Ω,Ft, P ), and let the true latent arbitrage free log-price process,

Xt ∈ R, be a any Ft-adapted semi-martingale in this space. One such semi-martingale is the simple

jump di�usion process given by,

dXt = µtdt+ σtdWt + κtdJt. (2.1)

The quadratic variation (QV) for this jump di�usion process is de�ned to be

〈X,X〉T =
ˆ T

0

σ2
t dt︸ ︷︷ ︸

integrated volatility

+
∑

0<t≤T

κ2
t︸ ︷︷ ︸

jump volatility

.

For the most parts of the subsequent analysis, we ignore the jump part and focus on the geometric

Brownian motion (GBM),

dXt = µtdt+ σtdWt (2.2)

with the corresponding de�nition below.

De�nition 1. The integrated variation (IV) or quadratic variation (QV) of the GBM process of

(2.2) is de�ned to be

〈X,X〉T =
ˆ T

0

σ2
t dt. (2.3)

When the underlying process is observed in discrete time, we have two sets of measures for QV,

depending on our assumption of market microstructure noise. Section 2.1.1 studies a set of QV

estimators assuming no noise, followed by Section 2.1.2 that introduces a number of estimators that

takes into account various speci�cations of the market microstructure noise.

2.1.1 High Frequency Volatility Estimators in Absence of Noise

Realized variance at tick frequency An intuitive practice is to estimate the variance from the

sum of the frequently sampled squared returns. The estimator is de�ned to be

[X,X]T =
∑
ti

(
Xti+1 −Xti

)2
. (2.4)

Under model (2.2), the approximation in (2.4) has the following property

plim
∑
ti

(
Xti+1 −Xti

)2 → ˆ T

0

σ2
t dt

6
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as the sampling frequency increases. Although this approach is justi�ed under the assumption of

a continuous stochastic model in an idealized world, it runs into a number of challenges when in

presence of market microstructure in practical applications. It has been found empirically (see for

example Hansen and Lunde, 2003) that the realized volatility estimator is not robust when the

sampling interval is small, which gives raise to issues such as large bias in the estimate and non-

robustness to changes in the sampling interval. In other words, since the observation noise is not

necessarily cadlag or have bounded variation, the observed log return is not in fact a semi-martingale.

Realized variance (RV) at sub tick frequency with regularly spaced sampling (Andersen

et al., 2001c) When the sampling frequency over the period [0, T ] is equally spaced at T/∆ , the

realized variance becomes

[X,X]T =
T/∆∑
j=1

(
Xt∆j −Xt∆(j−1)

)2
.

Here, we essentially throw away a large fraction of the available data by sampling less frequently

from the underlying high-frequency tick prices. This approach reduces the impact of microstructure

noise, without quantifying and correcting its e�ect for volatility estimation.

Bi-power variation (BV) (Barndor�-Nielsen and Shephard, 2004) To isolate and measure

the integrated volatility in a process with possible jumps as in (2.1), Barndor�-Nielsen and Shephard

(2004) proposed the bi-power variance (BV) estimator in the form

BVt (∆) =
π

2

T/∆−1∑
j=1

∣∣Xtj+∆ −Xtj

∣∣ ∣∣Xtj −Xtj−∆

∣∣ ,
which converges to QV in absence of noise.

2.1.2 High Frequency Volatility Estimators in Presence of Market Microstructure

Noise

Measures introduced in Section 2.1.1 do not take into account the fact that true asset price dynamics

are often not directly obtainable. Suppose that the log-price process as observed at the sampling

times is of the form

Yti = Xti + εti , (2.5)

where Xt is a latent true, or e�cient, log-price process and εti is known as the market microstructure

noise process. The source of this noise, εti , could come from

. Bid-ask bounce, where the traded price alternate between the bid and ask price multiple times

in a short period of time, which in term induces quadratic variation not inherent in the true

price process;

. Aggregation across di�erent Electronic Communication Networks (ECN) that leads to syn-

chronicity issues;

. Delay of recording, closely related to above, where the timestamp for a transaction can lag

behind the true transaction time due to latency issues at the data processing plant;
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. Di�erence in trade size or information content of price changes;

. Gradual response to block trades;

. Strategic component of order �ow and inventory control e�ects;

. Miss-recording, where price quote is erroneously recorded (i.e. zero prices, misplaced decimal);

. Post processing adjustments, where adjustments are introduced at the exchange or at the data

vendor, such as extrapolation of last period's price during period of subdued activity.

In general, and throughout this analysis, the word �noise� usually refers to the noise induced by ε,

and the word �discretization noise� for randomness due to the discretization (i.e. rounding error)

e�ect in [X,X]T in evaluating 〈X,X〉T .
We are interested in the implications of such a data generating process for the estimation of

the volatility of the e�cient log-price process as given in (2.2), using discretely sampled data on

the transaction price process. At sampling frequency measured in seconds rather than minutes or

hours, the drift, µt, is irrelevant, both economically and statistically, and so we shall focus on the

functional form of σt and set µt ≡ 0 throughout.

The observable return over a small time interval, ∆ = t2 − t1, can be expressed as

Yt2 − Yt1 =
ˆ t2

t1

σtdWt + εt2 − εt1 −→ Xt2 −Xt1 + εt2 − εt1 .

Unlike the return process, there is no reason to believe that noise should approach zero with increas-

ing sampling frequency, so we see that the noise to signal ratio increases with sampling frequency.

A question that naturally arises is why we are interested in the quadratic variation of X rather

then the observed process Y , given that the process Y is the one that we actually see, and therefore

trade on, in practice. The following key arguments are given by Aït-Sahalia et al. (2005),

. the variation of ε's is tied to each transaction, as opposed to the price process of the underlying

security. From the standpoint of trading, the ε's represent trading costs, which are di�erent

from the costs created by the volatility of the underlying process. This cost varies between

di�erent market agents;

. continuous �nance would be di�cult to implement if we were to use the QV estimated by

[Y, Y ], which depends on the data frequency;

Throughout the subsequent subsections on non-parametric estimators, we adopt the following nota-

tion, with additional, or slight change of, notations introduced as and when necessary.

De�nition 2. Estimator for QV as de�ned in (2.3), based on model Φ is denoted by 〈̂X,X〉
(Φ)

T .

De�nition 3. Realized Variance based on every j'th observed log-price process, starting with ob-

servation number r is denoted by:

[Y, Y ](j,r)T =
∑

0≤j(i−1)≤n−r−j

(
Ytji+t − Ytj(i−1)+t

)2
.
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Tick sampling estimator If we use all the data at the highest sampling frequency, i.e. tick-by-

tick, then under the assumption of iid noise, we have

〈̂X,X〉
(tick)

T = [Y, Y ](∆tick,1)
T ,

where ∆tick is the stochastic inter-arrival time between each tick arrival. Under the assumption of

serially correlated noise, we obtain the asymptotic distribution (Aït-Sahalia et al., 2009)

〈̂X,X〉
(tick)

T

L
≈ [X,X]T︸ ︷︷ ︸

QV

+ 2n
(
E
[
ε2
]

+ E [εt0εt1 ]
)︸ ︷︷ ︸

bias due to noise

+


4nΩ∞︸ ︷︷ ︸

due to noise

+
2T
n

ˆ T

0

σ4
t dt︸ ︷︷ ︸

due to discretization︸ ︷︷ ︸
total variance



1/2

Ztotal

Ztotal ∼ N (0, 1)

where the asymptotic variance, from standard formula for mixing sums, is given by

Ω∞ = V ar
{

(ε1 − ε0)2
}

+ 2
∞∑
i=1

Cov
{

(ε1 − ε0)2
, (εi+1 − εi)2

}
.

Note that in the case of iid noise, we have

〈̂X,X〉
(tick)

T = [X,X]T︸ ︷︷ ︸
object of interest

+ 2nE
[
ε2
]︸ ︷︷ ︸

due to noise

.

That is, our estimator is not unbiased and this bias is signi�cant compare to the signal, with the

noise to signal ratio increasing linearly with n. Thus this realized variance estimator does not give

the true integrated volatility 〈X,X〉T , but rather the variance of the microstructure noise E
[
ε2
]

scaled by (2n)−1.

Sparse sampling estimator (Andersen et al., 2001a) This is based on a trade o� between

sampling more frequently to obtain more data points and less frequently to avoid data being over-

whelmed by noise. Andersen et al. (2001a) suggest a sampling interval in the range from 5 to 30

minutes, so that the interval is short enough for the asymptotic of the measure to work well, and

long enough that the market microstructure noise can be neglected.

De�nition 4. The sparse sampling estimator is given by

〈̂X,X〉
(sparse)

T = [Y, Y ](∆sparese,1)
T ,

where ∆sparse = T/nsparse.

For example, with T = 1 day, or 6.5 hours of open trading on the NYSE, and we start with data

sampled on average ∆t = 1 second, then, for the full dataset, n = T/∆t = 23, 400; but once we

sample sparsely every 5 minutes, then we sample every 300th observation, and nsparse = 78.
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Under the assumption of dependent noise, we obtain the asymptotic distribution (Aït-Sahalia

et al., 2009)

〈̂X,X〉
(sparse)

T

L
≈ [X,X]T︸ ︷︷ ︸

QV

+ 2nsparseE
[
ε2
]︸ ︷︷ ︸

bias due to noise

+


4nsparseE

[
ε4
]︸ ︷︷ ︸

due to noise

+
2T

nsparese

ˆ T

0

σ4
t dt︸ ︷︷ ︸

due to discretization︸ ︷︷ ︸
total variance



1/2

Ztotal

Ztotal ∼ N (0, 1) . (2.6)

It is possible to determine an optimal sampling frequency that minimize the MSE (Aït-Sahalia

et al., 2005), which gives

n∗sparse =

(
T

4E [ε2]2

ˆ T

0

σ4
t dt

)1/3

.

Based on (2.6), we might be tempted to conclude that the optimal choice of nsparse is to make it as

small as possible. But that would overlook the fact that the bigger the nsparese, the closer the [X,X]T
to the target integrated variance 〈X,X〉T , i.e. the smaller the discretization noise. An excessively

sparse nsparse has the e�ect of increasing the variance of the estimator via the discretization e�ect,

which is proportional to n−1
sparse, as indicated in (2.6).

Two scale realized volatility (TSRV) estimator (Aït-Sahalia et al., 2009) The TSRV

estimator is based on a three step approach to ensure asymptotic unbiasness and e�ciency:

1. Sub-sampling by partitioning the original grid of observation times, G = {t0, . . . , tn} into

sub-samples, G(k), k = 1, . . . ,K where n/K → ∞ as n → ∞. For example, for G(1) start

at the the �rst observation and take an observation every ∆sparse minutes, etc. This gives

[Y, Y ](∆sparse,k)
T ;

2. Averaging the estimators obtained on the sub-samples, which gives

[Y, Y ](avg)T =
1
K

K∑
k=1

[Y, Y ](∆sparse,k)
T ,

constructed by averaging the estimators [Y, Y ](∆sparse,k)
T obtained by sampling sparely on each

of the K grids of average size n = n/K.

3. Bias correction is obtained by the estimator for noise term Ê [ε2] = 1
2n [Y, Y ](all)T .

De�nition 5. The unbiased small sampled adjusted TSRV estimator with iid noise is given by

〈̂X,X〉
(tsrv,iid,adj)

T =
(

1− n

n

)−1

︸ ︷︷ ︸
small sample adj.

 [Y, Y ](avg)T︸ ︷︷ ︸
slow time scale

− n

n
[Y, Y ](all)T︸ ︷︷ ︸

fast time scale

 .

10
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With the number of sub-samples optimally selected as K∗ = cn2/3, then has the following distribu-

tion

〈̂X,X〉
(tsrv,iid,adj)

T

L
≈ 〈X,X〉T︸ ︷︷ ︸

QV

+
1

n1/6


8
c2
E
[
ε2
]2︸ ︷︷ ︸

due to noise

+ c
4T
3

ˆ T

0

σ4
t dt︸ ︷︷ ︸

due to discretization︸ ︷︷ ︸
total variance



1/2

Ztotal, Ztotal ∼ N (0, 1) .

We see that the estimator is unbiased and consistent.

De�nition 6. The unbiased TSRV estimator with dependent noise is given by1

〈̂X,X〉
(tsrv,aa)

T =
n

(K − J)nK

 [Y, Y ](K)
T︸ ︷︷ ︸

slow time scale

−nK
nJ

[Y, Y ](J)
T︸ ︷︷ ︸

fast time scale

 ,

for 1 ≤ J < K ≤ n, where [Y, Y ](J)
T = 1

J

∑J−1
r=0 [Y, Y ](j,r)T = 1

J

∑n−J
i=0

(
Yti+J − Yti

)2
and nK =

(n−K + 1) /K.

With the number of sub-samples optimally selected as K∗ = cn2/3, then the estimator has the

following distribution

〈̂X,X〉
(tsrv,aa)

T

L
≈ 〈X,X〉T︸ ︷︷ ︸

QV

+
1

n1/6


1
c2
ξ2︸︷︷︸

due to noise

+ c
4T
3

ˆ T

0

σ4
t dt︸ ︷︷ ︸

due to discretization︸ ︷︷ ︸
total variance



1/2

Ztotal, Ztotal ∼ N (0, 1)

where ξ2 depends on the rate the J and K approaches ∞ as n→∞. The two cases are

. lim supn→∞
J
K = 1: ξ2 = ξ2

∞ = 8V ar (ε)2 + 16
∑∞
i=1 Cov (εto , εti)

2;

. lim supn→∞
J
K = 0: ξ2 = ξ2

∞ + 4α0 + 8
∑∞
i=1 αi, where αi = Cov

(
εt0 , εti+J

)
Cov (εti , εtJ ) +

Cum
(
εt0 , εti , εtJ , εti+J

)
.

Multiple scale realized volatility (MSRV) estimator (Zhang, 2006) This improves upon

the TRSV estimator's convergence rate of n−1/6 to n−1/4 at the cost of higher complexity. It

essentially generalizes TSRV to multiple time scale, by averaging not on two time scales (J,K) but
on multiple time scales.

1Assume strong mixing, such that ∃ρ < 1, such that
˛̨
Cov

`
εti , εti+L

´˛̨
≤ ρlV ar (ε)

11
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De�nition 7. The MSRV estimator is given by

〈̂X,X〉
(msrv)

T =
M∑
i=1

ai [Y, Y ](Ki)T︸ ︷︷ ︸
slow time scale

− 1
n

[Y, Y ](all)T︸ ︷︷ ︸
fast time scale

,

where the weights are given by

ai =
i

M
h

(
i

M

)
− 1

2M2

i

M
h
′
(
i

M

)
,

where h ∈ C1 and satisfying
´ 1

0
xh (x) dx = 1 and

´ 1

0
h (x) dx = 0.

The asymptotic distribution is cumbersome and readers are referred to derivations given in the

paper. Two points worth noting are

. Convergence of the MSRV remains Op
(
n−1/4

)
even for dependent noise;

. Optimizing the overall variance of MSRV estimator leads to realized kernel (RK) estimator,

discussed below.

Alternation (ALT) estimator (Large, 2007) Consider the observed price, Yt, as a pure jump

process with constant jump size, k, and whose deviation from the true latent process, Xt, are

stationary in business time2. The proposed semi-parametric ALT estimator essentially scales the

inconsistent but simple estimator nk2, where n is the number of jumps in the quote, by a factor that

takes into account Yt's propensity to alternate.

The underlying assumptions of the proposed estimator are

. Yt has uncorrelated alternations, where alternations are jumps whose direction is a reversal of

the last jump;

. Yt always jumps by a constant ±k;

. εt = Yt −Xt has no leverage e�ect, is stationary in business time and is weakly mixing ;

. Yt always jumps towards Xt;

. The identi�cation assumption holds, such that

{E [Yti |H1] = E [Yti |H2]} ↔ {E [Xti |H1] = E [Xti |H2]} ,

where H1 ∈ Ft−i , H2 ∈ Ft−i and H2 ⊂ H1;

. The buy-sell symmetry holds, such that (V − V0,W ) L= − (V − V0,W ).

De�nition 8. The ALT estimator is given by

〈̂X,X〉
(alt)

T = k2NT
CT
AT

,

2Business time: time of discrete observations; Calendar time: continue time in the normal sense.

12
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where NT , AT and CT are the number of jumps, number of alternations and number of continuations

in [0, T ], where NT = AT + CT . The asymptotic distribution is given by

lim
α→0

√
Nt

 〈̂X,X〉(alt)T

〈X,X〉T
− 1

 ∼ N (0, UMU>
)
,

where U =
(

1, (1+R)2

R

)
,M is the long-run variance of Π =

{(
〈X,X〉ti−〈X,X〉ti−1

E
h
〈X,X〉ti−〈X,X〉ti−1

i , Qi+1
2

)
: i ∈ N

}
,

Qi = {dAti − dCti : i ∈ N} ∈ {−1, 1}, and R = 〈X,X〉T
E[〈Y,Y 〉T ] .

Realized kernel (RK) estimator (Barndor�-Nielsen et al., 2008b)

De�nition 9. Realized kernel (RK) estimator for the quadratic variation of the observed log-price

process Yt, sampled at time t0, t∆, . . . , tn∆ is given by

〈̂X,X〉
(rk)

T =
H∑

h=−H

K
(

h

H + 1

) T/∆∑
j=|h|+1

(
Y∆j − Y∆(j−1)

) (
Y∆(j−h) − Y∆(j−h−1)

)
,

where the Parzen kernel is often used, given by

K (x) =


1− 6x2 + 6x3 0 ≤ x ≤ 1/2

2 (1− x)3 1/2 ≤ x ≤

0 x > 1.

1

It can be shown that the following asymptotic result holds (Barndor�-Nielsen et al., 2008b)

〈̂X,X〉
(rk)

T

p−→
ˆ T

0

σsds,

where H = cn3/5 gives the best trade-o� between asymptotic bias and variance. The main advantage

of the RK estimator is that it allow high frequency sampling by mitigating the noise e�ect by using

a kernel smoother over the sampled period.

Bayesian �ltering (BF) estimator (Zeng, 2003, 2004) Let X (t) be the latent continuous

value process for our assets. We have the following model setup:

. Trading times t1, t2, . . . , ti . . . are modeled by a conditional Poisson process, with intensity

function denoted by a (θ (t) , x (t) , t), where θ (t) is the parameter set at time t;

. The observed prices Y (ti) at time ti, is constructed via a random function Y (ti) = F (Xti),
where y = F (x) is a random transformation with transition probability p (y|x). Note the

random functions takes into account the noise around the true value process Xt, plus other

stylized facts such as clustering phenomenon (e.g. prices with integers and halves are most

likely and odd quarters are less so, etc).

With the above framework, information a�ects Xt, and has a permanent in�uence on the price;

while noise a�ects F (x), the random transition function, and only has a transient impact on price.

13
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Next, instead of viewing the prices Y (ti) in the order of trading occurrence over time, we model

them as a collection of counting processes:

~Y (t) ,


y1

y2

...

yn

 =


N1

{´ t
0
λ1 (θ (s) , X (s) , s) ds

}
N2

{´ t
0
λ2 (θ (s) , X (s) , s) ds

}
...

Nn

{´ t
0
λn (θ (s) , X (s) , s) ds

}

 (2.7)

where yk = Nk

{´ t
0
λk (θ (s) , X (s) , s) ds

}
is the counting process recording the cumulative number

of trades that have occurred at the k-th price level up to time t, and λk (θ (s) , X (s) , s) is the

corresponding intensity.

Under this representation, (θ (t) , X (t)) becomes the signal process, which cannot be observed

directly, and ~Y (t) becomes the observation process, which is corrupted by market microstructure

noise, modeled by p (y|x). Hence
(
θ (t) , X (t) , ~Y

)
is framed as a �ltering problem with counting

process observations.

Four mild assumption are necessary for the framework:

1. Nk's are unit Poisson processes under physical P -measure.

2. (θ,X), N1, N2, . . . , Nn are independent under P -measure, which implies that under suitable

Q-measure, (θ,X), Y1, Y2, . . . , Yn are independent.

3. The intensity can be expressed as λk (θ,X, t) = a (θ, x, t) p (yk|x) , where a (θ, x, t) is the total
intensity at time t and p (yk|x) is our previously de�ned transition probability from x to yk,

the k-th price level in (2.7). In other words, the total intensity determines the overall rate of

trade occurrence at time t and p (yk|x) determines the proportional intensity of trade at the

price level yk, when the value is x.

4. The total intensity, a (θ, x, t), is uniformly bounded from above.

The core of the Bayesian estimation via �ltering is constructing an algorithm to compute the con-

ditional distribution, which becomes a posterior after a prior is assigned.

Let πt be the conditional distribution of (θ,X) given F ~Yt and let

π (f, t) = EP
[
f (θ (t) , X (t))| F ~Yt

]
=
ˆ
f (θ (t) , X (t))πt (dθ, dx)

be the conditional expectation of f (θ (t) , X (t)) given F ~Yt . Then if we assume deterministic total

intensity a (θ, x, t) = a (t), the normalized �ltering equation is implied as

π (f, t) = π (f, 0) +
ˆ t

0

π (Af, s) ds+
n∑
k=1

ˆ t

0

[
π (fppk , s−)
π (pk, s−)

− π (f, s−)
]
dYk (s) (2.8)

where A is the in�nitesimal generator for the underlying stochastic equation of the value process

Xt, and pk = p (yk|x).
The �ltering problem is solved by a recursive algorithm, outlined below:

1. Split parameters set θ (t) into constant and time-dependent parts, i.e. θ (t) = (ξ, η (t)).

14
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2. Discretize state space (ξ, η,X) with mesh (εξ, εη, εx) and set ε = max (|εξ| , |εη| , |εx|).

3. Then (2.8) can be expressed as

πε (f, t) = πε (f, 0) +
ˆ t

0

πε (Aεf, s) ds+
n∑
k=1

ˆ t

0

[
πε (fppk , s−)
πε (pk, s−)

− π (f, s−)
]
dYε,k (s) . (2.9)

4. Given index spaces {ξj : j ∈ J }, {ηm : m ∈M} and {xl : l ∈ L}, we let

Pε (ξj , ηm, xl; t) , P
{
ξε = ξj , ηε (t) = ηm, xε (t) = xl| F

~Yε
t

}
and

1{ξε=ξj ,ηε=ηm,xε=xl} (ξε, ηε, xε) , 1 (ξj , ηm, xl)

then we have
π (1 (ξj , ηm, xl) , t) = Pε (ξj , ηm, xl; t)

π (1 (ξj , ηm, xl) pk, t) = Pε (ξj , ηm, xl; t) p (yk|xl; ξj , ηm)

πε (pk, t) =
∑
j′,m′,l′ Pε (ξj′ , ηm′ , xl′ ; t) p (yk|xl′ ; ξj′ , ηm′)

5. Given the derivation in the previous step, we substitute the indicator function 1 for f in (2.9)

to give us the �nal recursive equations for the posterior density of our parameter set.

Markov chain (MC) estimator (Hansen and Horel, 2010) Let Xt denote the observed

process and Yt the latent process3, such that

Xt = Yt + Ut,

where Ut is due to market microstructure noise plus the latent �nite variation process, such as

a cadlag jump process, inherent in Yt. De�ne two �ltrations, Gt = σ (Ys, Us, s ≤ t) and Ft =
σ (Xs, s ≤ t), such that Ft ⊂ Gt and Yt is assumed to be a Gt-martingale.

Lemma 10. If Ut is stationary with E [|Ut|] <∞ and φ-mixing with respect to Gt, that is

φ (m) = sup {|P (A|B)− P (B)| : A ∈ σ (Ut+s, s ≥ m) , B ∈ Gt} → 0, asm→ 0,

then E [Ut+h|Gt]
L1→ E [Ut] as h→∞.

Consider the G-�ltered process

E
[
XTi+h

∣∣GTi] = E
[
YTi+h

∣∣GTi]+ E
[
UTi+h

∣∣GTi]
which, under the GTi-martingale Yt and zero mean Ut assumptions, can be simpli�ed to give

E
[
XTi+h

∣∣GTi] = YTi . (2.10)

3Note: this notational convention is opposite to our normal nomenclature. We maintain notations used in the
original paper for ease of reference.
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De�ne the standard in-�ll asymptotic scheme

0 = T0 < T1 < · · · < Tn = T

where sup1≤i≤n |Ti − Ti−1| → 0 as n→∞. The h-steps �ltered realized variance is given by

RV
(h)
F =

n∑
i=1

{
E
[
XTi+h

∣∣GTi]− E [XTi+h−1

∣∣GTi−1

]}2

=
n∑
i=1

4XTi +
h∑
j=1

E
[
4XTi+j

∣∣GTi]− h∑
j=1

E
[
XTi+j−1

∣∣GTi−1

]
2

. (2.11)

Note that under the natural, feasible, �ltration for {Xt}, instead of (2.10) we obtain the result via

tower property of expectation

E
[
XTi+h

∣∣FTi] = E
[
E
[
YTi+h

∣∣GTi]∣∣FTi]+ E
[
E
[
UTi+h

∣∣GTi]∣∣FTi]
= E [YTi |FTi ] + E

[
ŨTi

∣∣∣FTi]
= E [XTi − UTi |FTi ] + E

[
ŨTi

∣∣∣FTi]
= YTi + UTi − E [UTi |FTi ] + E

[
ŨTi

∣∣∣FTi]
where Ũt = limh→∞E [Ut+h|Gt]. Note that quadratic variations of Yt and E [YTi |FTi ] will coincide
only if the quadratic variation of UTi − E [UTi |FTi ] is zero, which is key for this problem.

The central idea is to �lter observed price process by Markov Chain framework, using the natural

�ltration for {Xt}, Ft = σ (Xs, s ≤ t). The realized variance of this �ltered price then de�nes a novel
estimator of the quadratic variation estimator. The estimator takes advantage of the fact that price

increments are con�ned to a grid4. We initially assume that the observed price increments follow

a homogeneous chain, then later show that the estimator is robust to inhomogeneity when k, the

order of the Markov Chain, grows with sample size at a suitable rate.

Consider sample of high frequency prices, XT0 , . . . , XTn , where price increments,

∆XTi ∈ {x1, . . . , xS} ,

are distributed as a homogeneous Markov chain of order k with the number of states given by S .

Then consider the k-tuple, 4XTi = (∆XT−k+1, . . . ,4XTi), and index the possible values for 4XTi
by xs, s = 1, . . . , Sk, where xs ∈ {x1, . . . , xS}k ⊂ Rk. The transition matrix, P , is given by

Pr,s = Pr
(
4XTi+1 = xs

∣∣4XTi = xr
)
.

We use the vector f ∈ RSk to keep track of the value of ∆XTi , with fs being the last element of

xs, s = 1, . . . , Sk. For a particular realization of 4XTi , the conditional expectation of ∆XTi+1 can

be expressed as

E
[
∆XTi+h

∣∣4XTi = xr
]

=
Sk∑
s=1

Phr,sfs =
(
PhF

)
r
.

4Note: the logarithm of price is not on the grid
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De�ne the return of the h-steps �lter log-price,

y(h)
(
4XTi−1 , 4XTi

)
:= E

[
XTi+h

∣∣4XTi]− E [XTi+h−1

∣∣4XTi−1

]
,

such that

y(h)
(
4XTi−1 , 4XTi

)
= 4XTi +

h∑
j=1

E
[
∆XTi+j

∣∣4XTi]− h∑
j=1

E
[
∆XTi+j−1

∣∣4XTi−1

]
= 4XTi +

h∑
j=1

S∑
r=1

(
P jF

)
r

1{4XTi=xr} −
h∑
j=1

S∑
r=1

(
P jF

)
r

1{4XTi−1=xr}.

The contribution to RVF , when
(
4XTi−1 , 4XTi

)
= (xr, xs), is simply given by

{
y(h) (xr, xs)

}
.

Let nr,s =
∑n
i=1 1{4XTi−1=xr,4XTi=xs}, then the Markov �ltered realized variance is then given by

RV
(h)
F =

∑
r,s

nr,s

{
y(h) (xr, xs)

}2

.

We have the following expression for the �ltered returns.

Lemma 11. Let er denote the r-th unit vector. Then

y(h) (xr, xs) = e>r

(
I − Z(h)

)
f + e>s Z

(h)f

with Z(h) = I +
∑h
j=1

(
P j − I

)
and

y (xr, xs) = lim
h→∞

y(h) (xr, xs) = e>r (I − Z) f + e>s Zf

where Z is the fundamental matrix of the underlying Markov chain.

Focusing on the h =∞ case and de�ne y(r,s) = y (xr, xs), then the �ltered realized variance (the

infeasible estimator) is given by

RVF =
∑
r,s

nr,sy
2
(r,s).

The empirical transition matrix P̂ is given by P̂r,s = nr,s/nr,•, where nr,• =
∑
s nr,s. Then we have

the feasible estimator

RVF̂ =
∑
r,s

nr,sŷ
2
(r,s)

where ŷ2
(r,s) = e>r

(
I − Ẑ

)
f + e>r Ẑf and Ẑ =

(
I − P̂ − Π̂

)−1

.

De�nition 12. Markov Chain estimator in price level is de�ned as

MC# := n
〈
f,
(

2Ẑ − I
)
f
〉
π̂

where the inner product is de�ned to be 〈a, b〉π = a>Λπb with Λπ = diag (π1, π2, . . . , πSk). It can be

shown (Theorem 4 in paper) that RFF̂ −MC# = Op
(
n−1

)
, and if the �rst observe state coincides

with the last observed state then RVF̂ = MC#.
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Markov Chain estimator in log-price is to a good approximation

MC =
n2
〈
f,
(

2Ẑ − I
)
f
〉
π̂∑n

i=1X
2
Ti

.

This approximation is good as long as XTi does not �uctuate dramatically. MC allows for faster

computation and it preserves the asymptotic theory derived for MC#.

Robustness to inhomogeneity (for both MC# and its standard deviation) is dealt by arti�cially

increasing the order of the Markov chain. For example, a simulation study shows that estimation

for a data generating process with a Markov chain of order one, a Markov chain of order two yields

a consistent estimate for MC#, but the asymptotic variance of estimator increases with k. Note,

although misspeci�cation of the order two Markov chain leads to poor estimates of many population

quantities, but it will accurately estimate the quantity we seek.

One special feature of the MC estimator is that it is a generalization of the ALT estimator

proposed by Large (2007) (see Section 2.1.2). It can be shown that this is identical to MC#, with

k = 1, and S = 2 with f = (+κ, −κ)>.

2.1.3 Volatility Prediction

Volatility is more predictable then the mean of the underlying return process. Stylized e�ects such

as diurnal intraday pattern, and clustering at di�erent time duration are prevalent in many assets

and are well known and studied. In the subsections that follows, some key features of a number of

forecasting frameworks are introduced. Table 1 on page 19 summaries their key features.

GARCH (Bollerslev, 1986; Engle, 1982) The latent volatility process of asset returns are

relevant to a wide variety of applications, such as option pricing and risk management, and GARCH

models are widely used to model the dynamic features of volatility. This has sparked the development

of a large number of ARCH and GARCH models since the seminal paper by Engle (1982). Within

the GARCH framework, the key element is the speci�cation for the conditional variance.

GARCH models utilize daily returns (typically squared returns) to extract information about the

current level of volatility, and this information is used to form expectations about the next period's

volatility. A single return is unable to o�er more than a weak signal about the current level of

volatility. The implication is that GARCH models are poorly suited for situations where volatility

changes rapidly to a new level, because the GARCH model is slow at �catching up� and it will take

many periods for the conditional variance (implied by the GARCH model) to reach its new level.

Partial GARCH and MEM discussed in this Section, and the Realized GARCH in Section 2.2 are

second generation of GARCH models that address these shortcomings, but still retain the essential

features of the original framework.

UHF-GARCH (Engle, 2000) The proposed procedure is to model the associated variables,

such as observed (i.e. latent value plus any measurement noise) returns (or marks) conditional on

the arrival times, and then to separately model the arrival times. Below, the notations used in the

original paper are retained for ease of comparison.

De�ne inter-trade duration

xi = ti − ti−1
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and the corresponding k -marks, yi ∈ Rk ⊂ Ξ. The joint conditional density is given by

(xi, yi)|Fi−1 ∼ f (xi, yi| x̃i−1, ỹi−1; θi) ,

where x̃i−1 = {xi−1, xi−2, . . . , x1}, ỹi−1 = {yi−1, yi−2, . . . , y1} and θ is the parameters set for the

model. Consider the underlying arrival as a non-homogeneous Poisson process, with conditional

intensity

λi (t, x̃i−1, ỹi−1) = lim
∆t→0

Pr (N (t+ ∆t) > N (t)| x̃i−1, ỹi−1)
∆t

=

´
u∈Ξ

f ( t− ti−1, u| x̃i−1, ỹi−1; θi) du´ ´
s≥t, u∈Ξ

f (s− ti−1, u| x̃i−1, ỹi−1; θi) duds
.

De�ne the component conditional densities

f (xi, yi| x̃i−1, ỹi−1; θi) = g (xi| x̃i−1, ỹi−1; θ1i) q (yi|xi, x̃i−1, ỹi−1; θ2i) .

Then we obtain

λi (t, x̃i−1, ỹi−1) =
g ( t− ti−1| x̃i−1, ỹi−1; θ1i)´

s≥t g (s− ti−1| x̃i−1, ỹi−1; θ1i) ds
. (2.12)

Model for inter-arrival time, xi To model the inter-arrival time, xi, Engle and Russell (1998)

adopted the following framework:

De�nition 13. Autoregressive Conditional Duration (ACD) (Engle and Russell, 1998) is given by

xi = ψiεi εi ∼ iid (1, 1) (2.13)

ψi = ψ (x̃i−1, ỹi−1; θi) = E [xi| x̃i−1, ỹi−1; θ1i] =
ˆ

Ω

xig (xi| x̃i−1, ỹi−1; θ1i) dxi. (2.14)

Note that (2.13) is powerful because it nests

. log linear model: log xi = ziβ + wi, and

. Cox proportional hazard model (Cox, 1972): λ (t, z) = λ0 (t) e−zβ ; so if λ0 ≡ constant, then

we have (2.13).

Example. Conditional mean speci�cation

xi = ψiεi, εi ∼ Exp (1)

ψi = ω + αxi−1 + βψi−1.

From (2.13) we have

g (xi| x̃i−1, ỹi−1; θ1i) = g (xi = εiψi|ψi; θ1i)

= g

(
εi =

xi
ψi

∣∣∣∣ψi; θ1i

)
= p0

(
εi =

xi
ψi

∣∣∣∣ θ11

)
.
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The density and survivor function ε, and the base intensity can be expressed

ε ∼ p0 (•; θ11)

S0 (t; θ11) =
ˆ
s>t

p0 (s; θ11) ds

λ0 (t; θ11) =
p0 (t; θ11)
S0 (t; θ11)

.

Then (2.12) can be expressed by

λi (t, x̃i−1, ỹi−1) =
p0

(
t−ti−1
ψi

; θ11

)
´
s≥t p0

(
s−ti−1
ψi

; θ11

)
ds

=
p0

(
t−ti−1
ψi

; θ11

)
ψi
´es≥ t−ti−1

ψi

p0 (s̃; θ11) ds̃

= λ0

(
t− ti−1

ψi
; θ11

)
1
ψi
.

Note that once we have speci�ed the density of ε and the functional form for ψ, then the conditional

intensity is fully speci�ed. For example, if we have Pr (ε = x) = e−x , i.e. standard exponential

density, then we have

λi =
1
ψ2
i

(
1

e
t−ti−1
ψi

−1

)
.

Model for price volatility, σi Recall that the UHF-GARCH framework is a two step process of

modeling arrival time, xi, and price volatility, σi, separately. With xi speci�ed by (2.13) and (2.14),

we are now in a position to model σi.

The return process, ri, in terms of the observed price process, pi, is given by

ri = pi − pi−1.

The observed price process is related to the latent process, mi, via

pi = mi + ζi,

where ζi is error from truncation. Assume that the latent price, pi, to be a Martingale with respect

to public information with innovation that can be written, without loss of generality, proportional

to the square root of the time. We have a duration adjusted return given by

ri√
xi

=
∆mi√
xi

+
∆ζi√
xi

= νi + ηi,

such that all relevant quantities are expressed as per unit of time. Consider a serially correlated5

speci�cation for the second term

ηi = ρηi−1 + ξi + χξi−1,

5Autocorrelated since the truncation at one point in time is likely to be the same as the truncation several seconds
later

21



www.manaraa.com

then we arrive at an ARMA(1,1) model for our duration adjusted return given by

ri√
xi

= ρ
ri−1√
xi−1

+ ei + φei−1, (2.15)

where ei = νi + ξi.

De�nition 14. De�ne the conditional variance per unit of time

Vi−1

(
ri√
xi

∣∣∣∣xi) = σ2
i , (2.16)

where the �ltration for Vi−1 (•) is σ ((xi, ri) : i = 0, 1, . . . , i− 1).

Compare (2.16) to the de�nition in classic GARCH for return Vi−1 (ri|xi) = hi, we see that

hi = xiσ
2
i , hence σ

2
i is the variance per unit time.

Empirical observations There are a number of ways to specify σ2
i , once such speci�cation (Eqn

(40) in their paper) is given below

σ2
i = ω + αe2

i−1 + βσ2
i−1 + γix

−1
i + γ2

xi
ψi

+ γ3ξi−1 + γ4ψ
−1
i .

With the above �tted to data for IBM, a number of interesting observations is observed:

. mean of (2.15) is negative ⇒ �no news is bad news,� (Diamond and Verrecchia, 1987);

. γ1 is positive ⇒ �no trade means no news,� hence low volatility (Easley and O'Hara, 1992);

. γ2 is negative ⇒ mean reversion after surprise of trade;

. γ4 is positive ⇒ high transaction means high volatility.

Partial GARCH (Engle, 2002b) High-frequency �nancial data are now readily available and

the literature has recently introduce a number of realized measures of volatility, including the realized

variance, the bipower variation, the realized kernel, and many related quantities, see Sections 2.1.1

and 2.1.2, and Barndor�-Nielsen and Shephard (2002), Barndor�-Nielsen and Shephard (2004),

Barndor�-Nielsen et al. (2008b), Hansen and Horel (2010), and references therein. Any of these

measures is far more informative about the current level of volatility than is the squared return.

This makes realized measures useful for modeling and forecasting future volatility.

Let xt be some observable time series that is referred to as the realized measure. For instance, xt
could be the realized variance computed from high-frequency data on day t. The realized variance is,

like r2
t , related to ht, and this holds true for many high-frequency based measures. So it is natural

to augment the standard GARCH model with xt. A simple extension is to add the realized measure

to the dynamic equation for the conditional variance,

ht = ω + αr2
t−1 + βht−1 + γxt−1. (2.17)

This is known as the GARCH-X model, where the label �X� is due to xt being treated as an

exogenous variable. Engle (2002b) was the �rst to estimate this model with the realized variance
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as the �exogenous� variable xt. The GARCH-X model is referred to as a partial-model because it

treats xt as an exogenous variable. Within the GARCH-X framework no e�ort is paid to explain

the variation in the realized measures, so these are partial (incomplete) models that have nothing

to say about returns and volatility beyond a single period into the future. In order to complete the

model we need a speci�cation for xt, which is given in Section 2.2. This model was also estimated

by Barndor�-Nielsen and Shephard (2007) who used both the realized variance and the bi-power

variation as the exogenous variable. The condition variance, ht, is, by de�nition, adapted to Ft−1.

Thus, if γ 6= 0 then (2.17) implies that xt is adapted to Ft. A �ltration that would satisfy this

requirement is Ft = σ(rt, xt, rt−1, xt−1, . . .), but Ft could in principle be an even richer σ-�eld.

MEM Engle (2002b) The Multiplicative Error Model (MEM) by Engle (2002b) was the �rst

�complete� model in this context, see also Engle and Gallo (2006). This model speci�es a GARCH

structure for each of the realized measures, so that an additional latent volatility process is introduced

for each realized measure in the model. Another complete model is the HEAVY model by Shephard

and Sheppard (2010) that, in terms of its mathematical structure, is nested in the MEM framework.

Unlike the traditional GARCHmodels, these models operate with multiple latent volatility processes.

For instance, the MEM by Engle and Gallo (2006) has a total of three latent volatility processes and

the HEAVY model by Shephard and Sheppard (2010) has two (or more) latent volatility processes.

2.1.4 Covariance Prediction

Model-free predictor A simple estimator would be to use the trailing 255 daily close-to-close

return history to estimate the variance-covariance (VCV) matrix, with monthly update, i.e. the

estimated VCV is then kept constant throughout the month, until the next update. An alternative

would be to incorporate intraday information, using hourly open-to-close returns, where market-

microstructure noise is less prevalent. For this alternative, we need to address the contribution of

variance from activities outside of market hours. One obvious way to account for this systemic bias

is to scale the open-to-close VCV. In Figure 2.1 we plot the monthly variance of daily close-to-close

return against the monthly variance of hourly open-to-close return. Using simple ordinary least

squares (OLS) regression, together with the fact that trading spans 6.5 hours during the day, the

estimated the average per-hour ratios for open-to-close to overnight variance is in the range of 4.4

to 16.16. This is in-line with estimated value of 12.78 by Old�eld and Rogalski (1980) and 13.2 by

French and Roll (1986). We see that the value of this bias could vary signi�cantly depending on the

stock and, not shown here, it could also be a function of the sample period. This can be explained

by considering the following:

. on one end of the spectrum, for an American depositary receipt (ADR) that is linked to a

stock mainly traded on an Asian exchange, most of the information content would be captured

in the close-to-open returns. Hence, we expect a smaller (likely to be less than 1) hourly

open-to-close to overnight variance ratio;

. on the other end of the spectrum, for the stock of a company that generates its income mainly

in the US, we would expect most of the price movement coming from trading during market

6Note that the higher the ratio, the more volatile the open-to-close return relative to close-to-open returns.
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Figure 2.1: Monthly variance using daily close-to-close vs using hourly open-to-close. Sample period:
2008-02-02 to 2009-01-01. Slope is from simple OLS.

hours, hence a more volatile open-to-close return variance which leads to a higher variance

ratio.

The simplest form of model free estimator incorporating higher frequency data is as follows

. calculate hourly open-to-close returns (based on tick or higher frequency data);

. calculate VCV matrix over a suitably chosen number of observations as the look-back period ;

. scale VCV by stock speci�c scaling parameter, calculated over the same look-back period, to

give an unbiased estimator of daily close-to-close VCV.

Moving average predictor The RiskMetrics conditional exponentially weighted moving average

(EWMA) covariance estimator, based on daily observations, is given by

Ht = αrt−1r
>
t−1 + (1− α)Ht−1 (2.18)

where the initial recursion value, H0, can be taken to be the unconditional sample covariance matrix.

RiskMetrics (1996) suggests a value for the smoothing parameter of α = 0.06. The primary advantage
of this estimator is clear: it has no parameters to estimate and is simple to implement. The obvious

drawback is that it forces all assets to have the same smoothing coe�cient irrespective of the asset's

volatility dynamics. This will be addressed by the following section, where, with added complexity,

we aim to address some of these asset idiosyncratic behaviors.

When applied to high-frequency data, it has often been observed that (2.18) gives a noisy estima-

tor of the VCV matrix. Therefore, the RiskMetric EWMA estimator is adapted to high frequency

observations as follows. Let the daily latent covariance estimator, Hτ , be given by

Hτ = αrτr
>
τ + (1− α)Hτ−1
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Figure 2.2: MLE �tted EMWA parameter as a function of sampling period; Gaussian density.

where rτr>τ is the variance-covariance of the return over the period, τ ∈ [t1,τ , tn,τ ], r1,τ is the �rst

observed return for day τ and rn,τ is the n-th and last observed return for day τ . In other words,

rτr
>
τ is simply the high-frequency realized VCV for day τ . So we have one latent VCV estimator,

Hτ , per day.

To estimate the EWMA parameters explicitly, we use MLE to maximize the joint Gaussian den-

sity. The �tted result gives α = 0.30, i.e. signi�cantly more weight on the high-frequency estimator,

rτ−1r
>
τ−1, than that suggested by RiskMetric7. To quantify robustness of the EWMA estimator to

the sampling frequency, the dataset is down-sampled to frequencies corresponding to sampling every

10min, 15min, 20min, 25min and 30min. Figure 2.2 shows the MLE �tted parameter as a function

of sampling period. It can be seen that as sampling frequency decreases, there is a corresponding

decrease in the persistency parameter. This is attributable to the decreasing information content in

less frequently sampled return data.

DCC(1,1)-GARCH predictor (Engle, 2002c) The DCC-GARCH framework relies on two

latent processes: conditional variance D2
t , and conditional correlation Rt, where both Dt, Rt ∈ Rn×n

and Dt is diagonal, so that Ht = DtRtDt. The conditional variance is given by

D2
t = diag (ωi) + diag (κi)⊗ rt−1r

>
t−1 + diag (λi)⊗D2

t−1, (2.19)

where rt ∈ Rn and ⊗ is the Hadamard product. The conditional correlation is given by

Rt = diag (Qt)
−1/2

Qtdiag (Qt)
−1/2

Qt = (1− α− β)Q+ αεt−1ε
>
t−1 + βQt−1

7The MLE �tted parameters assuming a t(5)-distribution are (0.28, 0.72).

25



www.manaraa.com

where Q = E
[
εt−1ε

>
t−1

]
is the unconditional correlation matrix of the standardized residual. The

log-likelihood for Gaussian innovation can be expressed as

L = −1
2

∑
t

n log 2π + log |Dt|2 + r>t D
−2
t rt − ε>t εt

+ log |Rt|+ ε>t R
−1
t εt.

Parameter estimation is done via a two stage optimization procedure.

Stage One In the �rst stage, we maximize the log-likelihood of the conditional variance process,

θ̂ = arg max
ω,κ,λ

{
−1

2

∑
t

(
n log 2π + log |Dt|2 + r>t D

−2
t rt

)}
.

Stage Two In the second stage, we maximize the conditional correlation process, given the stage

one result,

max
α,β

{
−1

2

∑
t

(
log |Rt|+ ε>t R

−1
t εt − ε>t εt

)}
.

In the next Section, we will extend this framework to take into account high frequency observa-

tions based on a new proposed univariate model for the conditional variance.

2.2 Complete Framework: Realized GARCH

2.2.1 Framework

We propose a new framework that combines a GARCH structure for returns with a model for realized

measures of volatility. Models within this framework are called Realized GARCH models, a name

that transpires both the objective of these models (similar to GARCH) and the means by which

these models operate (using realized measures). A Realized GARCH model maintains the single

volatility-factor structure of the traditional GARCH framework. Instead of introducing additional

latent factors, we take advantage of the natural relationship between the realized measure and the

conditional variance, and we will argue that there is no need for additional factors in many cases.

The general structure of the RealGARCH(p,q) model is given by

rt =
√
htzt, (2.20)

ht = v(ht−1, . . . , ht−p, xt−1, . . . , xt−q), (2.21)

xt = m(ht, zt, ut), (2.22)

where zt ∼ iid (0, 1) and ut ∼ iid (0, σ2
u), with zt and ut being mutually independent.

We refer to the �rst two equations as the return equation and the GARCH equation, and these

de�ne a class of GARCH-X models, including those that were estimated by Engle (2002a) and

Barndor�-Nielsen and Shephard (2007). Recall that the GARCH-X acronym refers to the the fact

that xt is treated as an exogenous variable.
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We shall refer to (2.22) as the measurement equation, because the realized measure, xt, can

often be interpreted as a measurement of ht. The simplest example of a measurement equation is:

xt = ht + ut. The measurement equation is an important component because it �completes� the

model. Moreover, the measurement equation provides a simple way to model the joint dependence

between rt and xt, which is known to be empirically important. This dependence is modeled though

the presence of zt in the measurement equation, which we �nd to be highly signi�cant in our empirical

analysis.

It is worth noting that most (if not all) variants of ARCH and GARCH models are nested in the

Realized GARCH framework. See Bollerslev (2009) for a comprehensive list of such models. The

nesting can be achieved by setting xt = rt or xt = r2
t , and the measurement equation is redundant

for such models, because it is reduced to a simple identity.

The Realized GARCH model with a simple log-linear speci�cation is characterized by the follow-

ing GARCH and measurement equations.

log ht = ω +
∑p

i=1
βi log ht−i +

∑q

j=1
γj log xt−j , (2.23)

log xt = ξ + ϕ log ht + τ(zt) + ut, (2.24)

where zt = rt/
√
ht ∼ iid (0, 1), ut ∼ iid (0, σ2

u), and τ(z) is called the leverage function.

Remark 15. A logarithmic speci�cation for the measurement equation seems natural in this context.

The reason is that (2.20) implies that

log r2
t = log ht + log z2

t , (2.25)

and a realized measure is in many ways similar to the squared return, r2
t , albeit a more accurate

measure of ht. It is therefore natural to explore speci�cations where log xt is expressed as a function

of log ht and zt, such as (2.24). A logarithmic form for the measurement equation makes it convenient

to specify the GARCH equation with a logarithmic form, because this induces a convenient ARMA

structure, as we shall see below.

Remark 16. In our empirical application we adopt a quadratic speci�cation for the leverage func-

tion, τ(zt). The identity (2.25) motivated us to explore expressions that involves log z2
t , but these

were inferior to the quadratic expression, and resulted in numerical issues because zero returns are

occasionally observed in practice.

Remark 17. The conditional variance, ht is, by de�nition, adapted to Ft−1. Therefore, if γ 6=
0 then xt must also be adapted to Ft. A �ltration that would satisfy this requirement is Ft =
σ(rt, xt, rt−1, xt−1, . . .), but Ft could in principle be an even richer σ-�eld.

Remark 18. Note that the measurement equation does not require xt to be an unbiased measure of

ht. For instance, xt could be a realized measure that is computed with high-frequency data from

a period that only spans a fraction of the period that rt is computed over. E.g. xt could be the

realized variance for a 6.5 hour long period whereas the return, rt, is a close-to-close return that

spans 24 hours. When xt is roughly proportional to ht, then we should expect ϕ ≈ 1, and that is

indeed what we �nd empirically. Both when we use open-to-close returns and close-to-close returns.
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An attractive feature of the log-linear Realized GARCH model is that it preserves the ARMA

structure that characterizes some of the standard GARCH models. This shows that the �ARCH�

nomenclature is appropriate for the Realized GARCH model. For the sake of generality we derive

the result for the case where the GARCH equation includes lagged squared returns. Thus consider

the following GARCH equation,

log ht = ω +
∑p

i=1
βi log ht−i +

∑q

j=1
γj log xt−j +

∑q

j=1
αj log r2

t−j , (2.26)

where q = maxi{(αi, γi) 6= (0, 0)}.

Proposition 19. De�ne wt = τ(zt) + ut and vt = log z2
t − κ, where κ = E log z2

t . The Realized

GARCH model de�ned by (2.24) and (2.26) implies

log ht = µh +
p∨q∑
i=1

(αi + βi + ϕγi) log ht−i +
q∑
j=1

(γjwt−j + αjvt−j),

log xt = µx +
p∨q∑
i=1

(αi + βi + ϕγi) log xt−i + wt +
p∨q∑
j=1

{−(αj + βj)wt−j + ϕαjvt−j} ,

log r2
t = µr +

p∨q∑
i=1

(αi + βi + ϕγi) log r2
t−i + vt +

p∨q∑
j=1

{γi(wt−j − ϕvt−j)− βjvt−j} ,

where µh = ω + γ•ξ + α•κ, µx = ϕ(ω + α•κ) + (1− α• − β•)ξ, and µr = ω + γ•ξ + (1− β• − ϕγ•)κ,
with

α• =
∑q

j=1
αj , β• =

∑p

i=1
βi, and γ• =

∑q

j=1
γj ,

using the conventions βi = γj = αj = 0 for i > p and j > q.

So the log-linear Realized GARCH model implies that log ht is ARMA(p ∨ q, q − 1), whereas
log r2

t and log xt are ARMA(p ∨ q, p ∨ q). If α1 = · · · = αq = 0, then log xt is ARMA(p ∨ q, p).
From Proposition 19 we see that the persistence of volatility is summarized by a persistence

parameter

π =
p∨q∑
i=1

(αi + βi + ϕγi) = α• + β• + ϕγ•.

Example 20. By setting xt = r2
t , it is easy to verify that the RealGARCH(p,q) nests the GARCH(p,q)

model. For instance with p = q = 1 we obtain the GARCH(1,1) structure with

v(ht−1, r
2
t−1) = ω + αr2

t−1 + βht−1,

m(ht, zt, ut) = htz
2
t .

The measurement equation is simply an identity in this case, i.e. we can take ut = 0, for all t.

Example 21. If we set xt = rt, then we obtain the EGARCH(1,1) model by Nelson (1991) with

v(ht−1, rt−1) = exp {ω + α|zt−1|+ θzt−1 + β log ht−1} , since zt−1 = rt−1/
√
ht−1,

m(ht, zt, ut) =
√
htzt.
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Naturally, the interesting case is when xt is a high-frequency based realized measure, or a vector

containing several realized measures. Next we consider some particular variants of the Realized

GARCH model.

Consider the case where the realized measure, xt, is a consistent estimator of the integrated

variance. Now write the integrated variance as a linear combination of the conditional variance

and a random innovation, and we obtain the relation xt = ξ + ϕht + εt. We do not impose ϕ = 1
so that this approach also applies when the realized measure is computed from a shorter period

(e.g. 6.5 hours) than the interval that the conditional variance refers to (e.g. 24 hours). Having

a measurement equation that ties xt to ht has several advantages. First, it induces a simple and

tractable structure that is similar to that of the classical GARCH framework. For instance, the

conditional variance, the realized measure, and the squared return, all have ARMA representations.

Second, the measurement equation makes it simple to model the dependence between shocks to

returns and shocks to volatility, that is commonly referred to as a leverage e�ect. Third, the

measurement equation induces a structure that is convenient for prediction. Once the model is

estimated it is simple to compute distributional predictions for the future path of volatilities and

returns, and these predictions do not require us to introduce auxiliary future values for the realized

measure.

To illustrate the framework and �x ideas, consider a canonical version of the Realized GARCH

model that will be referred to as the RealGARCH(1,1) model with a log-linear speci�cation. This

model is given by the three equations

rt =
√
htzt,

log ht = ω + β log ht−1 + γ log xt−1,

log xt = ξ + ϕ log ht + τ(zt) + ut,

where rt is the return, zt ∼ iid(0, 1) and ut ∼ iid(0, σ2
u), and ht = var(rt|rt−1, xt−1, rt−2, xt−2, . . .).

The last equation relates the observed realized measure to the latent volatility, and is therefore

called the measurement equation. It is easy to verify that log ht is an autoregressive process of order

one, log ht = µ + π log ht−1 + wt−1, where µ = ω + γξ, π = β + ϕγ, and wt = γτ(zt) + γut. So

it is natural to adopt the nomenclature of GARCH models. The inclusion of the realized measure

in the model and the fact that log xt has an ARMA representation motivate the name Realized

GARCH. A simple, yet potent speci�cation of the leverage function is τ(z) = τ1z+ τ2(z2−1), which
can generate an asymmetric response in volatility to return shocks. The simple structure of the

model makes the model easy to estimate and interpret, and leads to a tractable analysis of the quasi

maximum likelihood estimator.

The MEM by Engle and Gallo (2006) utilizes two realized measures in addition to the squared

returns. These are the intraday range (high minus low) and the realized variance, whereas the

HEAVY model by Shephard and Sheppard (2010) uses the realized kernel (RK) by Barndor�-Nielsen

et al. (2008b). These models introduce an additional latent volatility process for each of the realized

measures. So the MEM and the HEAVY digress from the traditional GARCH models that only

have a single latent volatility factor.

Unlike the MEM by Engle and Gallo (2006) and the HEAVY model by Shephard and Sheppard

(2010), the Realized GARCH has the following characteristics.
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. Maintains the single factor structure of latent volatility.

. Ties the realized measure directly to the conditional variance.

. Explicit modeling of the return-volatility dependence (leverage e�ect).

Key model features are given in Table 1.

Brownless and Gallo (2010) estimates a restricted MEM model that is closely related to the

Realized GARCH with the linear speci�cation. They utilize a single realized measure, the realized

kernel by Barndor�-Nielsen et al. (2008b), so that they have two latent volatility processes, ht =
E(r2

t |Ft−1) and µt = E(xt|Ft−1). However, their model is e�ectively reduced to a single factor

model as they introduce the constraint, ht = c+dµt, see Brownless and Gallo (2010, Eqns. (6)-(7)).

This structure is also implied by the linear version of our measurement equation. However, they do

not formulate a measurement equation or relate xt − µt to a leverage function. Instead they, for

the purpose of simplifying the prediction problem, adopt a simple time-varying ARCH structure,

µt = at + btxt−1, where at and bt are de�ned by spline methods. Spline methods were introduced in

this context by Engle and Rangel (2008) to capture the low-frequency variation in the volatility.

One of the main advantages of Realized GARCH framework is the simplicity by which dependence

between return-shocks and volatility shocks is modeled with the leverage function. The MEM is

formulated with a general dependence structure for the innovations that drive the latent volatility

processes. The usual MEM formulation is based on a vector of non-negative random innovations,

ηt, that are required to have mean E(ηt) = (1, . . . , 1)′. The literature has explored distributions

with this property such as certain multivariate Gamma distributions, and Cipollini, Engle, and

Gallo (2009) use copula methods that entail a very �exible class of distributions with the required

structure. Some drawbacks of this approach include: estimation is complex; and a rigorous analysis

of the asymptotic properties of these estimators seems intractable. A simpler way to achieve the

structure in the multiplicative error distribution is by setting ηt = Zt � Zt, and work with the

vector of random variables random variables, Zt, instead. The required structure can be obtained

with a more traditional error structure, where each element of Zt is required to have zero mean

and unit variance. This alternative formulation can be adopted without any loss of generality, since

the dependence between the elements of Zt is allow to take any form. The estimates in Engle and

Gallo (2006) and Shephard and Sheppard (2010) are based on a likelihood where the elements of

ηt are independent χ2-distributed random variables with one degree of freedom. We have used the

alternative formulation in Table 1 where (z2
t , z

2
R,t, z

2
RV,t)

′ corresponds to ηt in the MEM by Engle

and Gallo (2006).

Leverage function and news impact The function τ(z) is called the leverage function because

it captures the dependence between returns and future volatility, a phenomenon that is referred to

as the leverage e�ect. We normalized such functions by Eτ(zt) = 0, and we focus on those that have

the form

τ(zt) = τ1a1(zt) + · · ·+ τkak(zt), where Eak(zt) = 0, for all k,

so that the function is linear in the unknown parameters. We shall see that the leverage function

induces an EGARCH type structure in the GARCH equation, and we note that the functional

form used in Nelson (1991), τ(zt) = τ1z+ τ+(|zt| −E|zt|) is within the class of leverage functions we
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consider. We shall mainly consider leverage functions that are constructed from Hermite polynomials

τ(z) = τ1z + τ2(z2 − 1) + τ3(z3 − 3z) + τ4(z4 − 6z2 + 3) + · · · ,

and our baseline choice for the leverage function is a simple quadratic form τ(zt) = τ1zt+ τ2(z2
t −1).

This choice is convenient because it ensures that Eτ(zt) = 0, for any distribution of zt, so long as

Ezt = 0 and var(zt) = 1. The polynomial form is also convenient in our quasi likelihood analysis,

and in our derivations of the kurtosis of returns generated by this model.

The leverage function τ(z) is closely related to the news impact curve, see Engle and Ng (1993),

that maps out how positive and negative shocks to the price a�ect future volatility. We can de�ne

the news impact curve by

ν(z) = E(log ht+1|zt = z)− E(log ht+1),

so that 100ν(z) measures the percentage impact on volatility as a function of the studentized return.
From the ARMA representation it follows that ν(z) = γ1τ(z).

Quasi-Maximum Likelihood Estimation (QMLE) Analysis In this section we discuss the

asymptotic properties of the quasi-maximum likelihood estimator within the RealGARCH(p, q)
model. The structure of the QMLE analysis is very similar to that of the standard GARCH model,

see Bollerslev and Wooldridge (1992), Lee and Hansen (1994), Lumsdaine (1996), and Jensen and

Rahbek (2004b,a). Both Engle and Gallo (2006) and Shephard and Sheppard (2010) justify the

standard errors they report, by referencing existing QMLE results for GARCH models. This argu-

ment hinges on the fact that the joint log-likelihood in Engle and Gallo (2006) and Shephard and

Sheppard (2010) is decomposed into a sum of univariate GARCH-X models, whose likelihood can be

maximized separately. The factorization of the likelihood is achieved by two facets of these models:

One is that all observables (i.e. squared return and each of the realized measures) are being tied to

their individual latent volatility process. The other is that the primitive innovations in these models

are taken to be independent in the formulation of the likelihood function. The latter inhibits a direct

modeling of leverage e�ect with a function such as τ(zt), which is one of the traits of the Realized

GARCH model.

In this section we will derive the underlying QMLE structure for the log-linear Realized GARCH

model. The structure of the linear Realized GARCH model is similar. We provide detailed expres-

sions for the �rst and second derivatives of the log-likelihood function. These expressions facilitate

direct computation of robust standard errors, and provide insight about regularity conditions that

would justify QMLE inference. For instance, the �rst derivative will unearth regularity conditions

that enables a central limit theorem be applied to the score function.

For the purpose of estimation, we adopt a Gaussian speci�cation, so that the log likelihood

function is given by

`(r, x; θ) = −1
2

n∑
t=1

[log(ht) + r2
t /ht + log(σ2

u) + u2
t/σ

2
u].

We write the leverage function as τ ′at = τ1a1(zt) + · · ·+ τ ′kak(zt), and denote the parameters in the
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model by

θ = (λ′, ψ′, σ2
u)′, where λ = (ω, β1, . . . , βp, γ1, . . . , γq)′, ψ = (ξ, ϕ, τ ′)′.

To simplify the notation we write h̃t = log ht and x̃t = log xt, and de�ne

gt = (1, h̃t−1, . . . , h̃t−p, x̃t−1, . . . , x̃t−q)′, mt = (1, h̃t, a′t)
′.

So the GARCH and measurement equations can be expresses as

h̃t = λ′gt and x̃t = ψ′mt + ut.

The dynamics that underlies the score and Hessian are driven by ht and its derivatives with respect

to λ. The properties of these derivatives are stated next.

Lemma 22. De�ne ḣt = ∂h̃t
∂λ and ḧt = ∂2h̃t

∂λ∂λ′ . Then ḣs = 0 and ḧs = 0 for s ≤ 0, and

ḣt =
p∑
i=1

βiḣt−i + gt and ḧt =
p∑
i=1

βiḧt−i + (Ḣt−1 + Ḣ ′t−1),

where Ḣt−1 =
(

01+p+q×1, ḣt−1, . . . , ḣt−p, 01+p+q×q

)
is an p+ q + 1× p+ q + 1 matrix.

(ii) When p = q = 1 we have with β = β1 that

ḣt =
t−1∑
j=0

βjgt−j and ḧt =
t−1∑
k=1

kβk−1(Gt−k +G′t−k),

where Gt = (03×1, gt, 03×1).

Proposition 23. (i) The score, ∂`
∂θ =

n∑
t=1

∂`t
∂θ , is given by

∂`t
∂θ

= −1
2


(1− z2

t + 2ut
σ2
u
u̇t)ḣt

− 2ut
σ2
u
mt

σ2
u−u

2
t

σ4
u

 ,

where u̇t = ∂ut/∂ log ht = −ϕ+ 1
2ztτ

′ȧt with ȧt = ∂a(zt)/∂zt.

(ii) The second derivative, ∂2`
∂θ∂θ′ =

n∑
t=1

∂2`t
∂θ∂θ′ , is given by

∂2`t
∂θ∂θ′

=


− 1

2

{
z2
t + 2(u̇2

t+utüt)
σ2
u

}
ḣtḣ
′
t − 1

2

{
1− z2

t + 2utu̇t
σ2
u

}
ḧt • •

u̇t
σ2
u
mtḣ

′
t + ut

σ2
u
btḣ
′
t − 1

σ2
u
mtm

′
t •

utu̇t
σ4
u
ḣ′t

ut
σ4
u
m′t

1
2
σ2
u−2u2

t

σ6
u

 ,

where bt = (0, 1,− 1
2ztȧ

′
t)
′ and üt = − 1

4τ
′ {ztȧt + z2

t ät
}
with ät = ∂2a(zt)/∂z2

t .

An advantage of our framework is that we can draw upon results for generalized hidden Markov

models. Consider the case p = q = 1: From Carrasco and Chen (2002, Proposition 2) it follows

that h̃t has a stationary representation provided that π = β + ϕγ ∈ (−1, 1), and if we assign h̃0
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its invariant distribution, then h̃t is strictly stationary and β-mixing with exponential decay, and

E|h̃t|s <∞ if E|τ(zt) + ut|s <∞. Moreover, {(rt, xt), t ≥ 0} is a generalized hidden Markov model,

with hidden chain {h̃t, t ≥ 0}, and so by Carrasco and Chen (2002, Proposition 4) it follows that

also {(rt, xt)} is stationary β-mixing with exponentially decay rate.

The robustness of the QMLE as de�ned by the Gaussian likelihood is, in part, re�ected by the

weak assumptions that make the score a martingale di�erence sequence. These are stated in the

following Proposition.

Proposition 24. (i) Suppose that E(ut|zt,Ft−1) = 0, E(z2
t |Ft−1) = 1, and E(u2

t |Ft−1) = σ2
u. Then

st(θ) = ∂`t(θ)
∂θ is a martingale di�erence sequence.

(ii) Suppose, in addition, that {(rt, xt, h̃t)} is stationary and ergodic. Then

1√
n

n∑
t=1

∂`t
∂θ

d→ N(0,Jθ) and − 1
n

n∑
t=1

∂2`t
∂θ∂θ′

p→ Iθ,

provided that

Jθ =


1
4E(1− z2

t + 2ut
σ2
u
u̇t)2E

(
ḣtḣ
′
t

)
• •

− 1
σ2
u

E
(
u̇tmtḣ

′
t

)
1
σ2
u

E(mtm
′
t) •

−E(u3
t )E(u̇t)

2σ6
u

E(ḣ′t)
E(u3

t )
2σ6
u
E(m′t)

E(u2
t/σ

2
u−1)2

4σ4
u

 ,

and

Iθ =


{

1
2 + E(u̇2

t )
σ2
u

}
E(ḣtḣ′t) • 0

− 1
σ2
u

E
{

(u̇tmt + utbt) ḣ′t
}

1
σ2
u

E(mtm
′
t) 0

0 0 1
2σ4
u

 ,

are �nite.

Note that in the stationary case we have Jθ = E
(
∂`t
∂θ

∂`t
∂θ′

)
, so a necessary condition for |Jθ| <∞

is that zt and ut have �nite forth moments. Additional moments may be required for zt, depending

on the complexity of the leverage function τ(z), because u̇t depends on τ(zt).

Theorem 25. Under suitable regularity conditions, we have the asymptotic result.

√
n
(
θ̂n − θ

)
→ N

(
0, I−1

θ JθI
−1
θ

)
.

It is worth noting that the estimator of the parameters in the GARCH equation, λ, and those of

the measurement equation, ψ, are not asymptotically independent. This asymptotic correlation is

induced by the leverage function in our model, and the fact that we link the realized measure, xt,

to ht with a measurement equation.

In the context of ARCH and GARCH models, it has been shown that the QMLE estimator is

consistent with an Gaussian limit distribution regardless of the process being stationary or non-

stationary. The latter was established in Jensen and Rahbek (2004b,a). So unlike the case for

autoregressive processes, we do not have a discontinuity of the limit distribution at the knife-edge in

the parameter space that separates stationary and non-stationary processes. This is an important

result for empirical applications, because the point estimates are typically found to be very close to

the boundary.
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Notice that the martingale di�erence result for the score, Proposition 24(i), does not rely on

stationarity. So it is reasonable to conjecture that the central limit theorem for martingale di�erence

processes is applicable to the score even if the process is non-stationary.

While standard errors for θ̂ may be compute from numerical derivatives, these can also be

computed directly using the following expressions

Ĵ =
1
n

n∑
t=1

ŝtŝ
′
t, where ŝt =

{
1
2 (1− ẑ2

t +
2ût
σ̂2
u

ˆ̇ut)
ˆ̇
h′t,−

ut
σ2
u

m̂′t,
σ̂2
u − û2

t

2σ̂4
u

)
}′
,

and

Î =
1
n

n∑
t=1


1
2

{
ẑ2
t + 2(ˆ̇u2

t+ût
ˆ̈ut)

σ̂2
u

} ˆ̇
ht

ˆ̇
h′t + 1

2

{
1− ẑ2

t + 2ût ˆ̇ut
σ̂2
u

} ˆ̈
ht • •

−σ̂−2
u

(
ˆ̇utm̂t + ûtb̂t

) ˆ̇
h′t

1
σ̂2
u
m̂tm̂

′
t •

− ût ˆ̇utσ̂4
u

ˆ̇
h′t − ût

σ̂4
u
m̂′t

1
2

2û2
t−σ̂

2
u

σ̂6
u



=
1
n

n∑
t=1


1
2

{
ẑ2
t + 2(ˆ̇u2

t+ût
ˆ̈ut)

σ̂2
u

} ˆ̇
ht

ˆ̇
h′t + 1

2

{
1− ẑ2

t + 2ût ˆ̇ut
σ̂2
u

} ˆ̈
ht • •

−σ̂−2
u

(
ˆ̇utm̂t + ûtb̂t

) ˆ̇
h′t − 1

σ̂2
u
m̂tm̂

′
t •

− ût ˆ̇utσ̂4
u

ˆ̇
h′t 0 1

σ̂4
u

 ,

where the zero follows from the �rst order condition:
∑n
t=1 ûtm̂

′
t = 0. Moreover, the �rst-order

conditions for λ implies that − ût ˆ̇utσ̂4
u

ˆ̇
h′ = 1−ẑ2

t

2σ̂2
u

ˆ̇
ht.

For our baseline leverage function, τ1zt + τ2(z2
t − 1), we have

mt =


1

log ht

zt

z2
t − 1

 , bt =


0

1

− 1
2zt

−z2
t

 , u̇t = −ϕ+
1
2
τ1zt + τ2z

2
t , üt = −1

4
τ1zt − τ2z2

t .

Decomposition of likelihood function The log-likelihood function is (conditionally on F0 =
σ({rt, xt, ht}, t ≤ 0)) given by

logL({rt, xt}nt=1; θ) =
n∑
t=1

log f(rt, xt|Ft−1).

Standard GARCH models do not model xt, so the log-likelihood we obtain for these models cannot

be compared to those of the Realized GARCH model. However, we can factorize the joint conditional

density for (rt, xt) by
f(rt, xt|Ft−1) = f(rt|Ft−1)f(xt|rt,Ft−1),

and compare the partial log-likelihood, `(r) :=
n∑
t=1

log f(rt|Ft−1), with that of a standard GARCH

model. Speci�cally for the Gaussian speci�cation for zt and ut, we split the joint likelihood, into the
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sum

`(r, x) = −1
2

n∑
t=1

[log(2π) + log(ht) + r2
t /ht]︸ ︷︷ ︸

=`(r)

+−1
2

n∑
t=1

[log(2π) + log(σ2
u) + u2

t/σ
2
u]︸ ︷︷ ︸

=`(x|r)

.

Asymmetries in the leverage function are summarized by the following two statistics,

ρ− = corr{τ(zt) + ut, zt|zt < 0} and ρ+ = corr{τ(zt) + ut, zt|zt > 0}.

These capture the slope of a piecewise linear news impact curve for negative and positive returns,

such as that implied by the EGARCH model.

Multiperiod forecasts One of the main advantages of having a complete speci�cation, i.e., a

model that fully describes the dynamic properties of xt is that it multi-period ahead forecasting is

feasible. In contrast, the GARCH-X model can only be used to make one-step ahead predictions.

Multi-period ahead predictions are not possible without a model for xt. Multi-period ahead pre-

dictions with the Realized GARCH model is straightforward. We let h̃t denote either ht or log ht,
such that the results presented in this section apply to both the linear and log-linear variants of the

Realized GARCH model.

Consider �rst the case where p = q = 1. By substituting the GARCH equation into measurement

equation we obtain the VARMA(1,1) structure[
h̃t

x̃t

]
=

[
β γ

ϕβ ϕγ

][
h̃t−1

x̃t−1

]
+

[
ω

ξ + ϕω

]
+

[
0

τ(zt) + ut

]
,

that can be used to generate the predictive distribution of future values of h̃t, x̃t, as well as returns

rt, using[
h̃t+h

x̃t+h

]
=

[
β γ

ϕβ ϕγ

]h [
h̃t

x̃t

]
+
h−1∑
j=0

[
β γ

ϕβ ϕγ

]j {[
ω

ξ + ϕω

]
+

[
0

τ(zt+h−j) + ut+h−j

]}
.

This is easily extended to the general case (p, q ≥ 1) where we have

Yt = AYt−1 + b+ εt,

with the conventions

Yt =



h̃t
...

h̃t−p+1

x̃t
...

x̃t−q+1


, A =


(β1, . . . , βp) (γ1, . . . , γq)

(Ip−1×p−1, 0p−1×1) 0p−1×q

ϕ(β1, . . . , βp) ϕ(γ1, . . . , γq)
0q−1×p (Iq−1×q−1, 0q−1×1)

 ,
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b =


ω

0p−1×1

ξ + ϕω

0q−1×1

 , εt =

 0p×1

τ(zt) + ut

0q×1

 ,
so that

Yt+h = AhYt +
h−1∑
j=0

Aj(b+ εt+h−j).

The predictive distribution for h̃t+h and/or x̃t+h, is given from the distribution of
∑h−1
i=0 A

iεt+h−i,

which also enable us to compute a predictive distribution for rt+h, and cumulative returns rt+1 +
· · ·+ rt+h.

Induced properties of cumulative returns The skewness for single period returns is non-zero,

if and only if the studentized return, zt, has non-zero skewness. This follows directly from the

identity rt =
√
htzt, and the assumption that zt⊥⊥ht, that shows that,

E(rdt ) = E(hd/2t zdt ) = E
{

E(hd/2t zdt |Ft−1)
}

= E(hd/2t )E(zdt ),

and in particular that E(r3
t ) = E(h3/2

t )E(z3
t ). So a symmetric distribution for zt implies that rt has

zero skewness, and this is property that is shared by standard GARCH model and Realized GARCH

model alike.

For the skewness and kurtosis of cumulative returns, rt+ · · ·+rt+k, the situation is very di�erent,
because the leverage function induces skewness.

Proposition 26. Consider RealGARCH(1,1) model and de�ne π = β+ϕγ and µ = ω+ϕξ, so that

log ht = π log ht−1 + µ+ γwt−1, where wt = τ1zt + τ2(z2
t − 1) + ut,

with zt ∼ iidN (0, 1) and ut ∼ iidN (0, σ2
u). The kurtosis of the return rt =

√
htzt is given by

E(r4
t )

E(r2
t )2

= 3

( ∞∏
i=0

1− 2πiγτ2√
1− 4πiγτ2

)
exp

{ ∞∑
i=0

π2iγ2τ2
1

1− 6πiγτ2 + 8π2iγ2τ2
2

}
exp

{
γ2σ2

u

1− π2

}
. (2.27)

There does not appear to be a way to further simplify the expression (2.27), however when γτ2
is small, as we found it to be empirically, we have the approximation (see the appendix for details)

E(r4
t )

E(r2
t )2
' 3 exp

{
γ2τ2

2

− log π
+
γ2(τ2

1 + σ2
u)

1− π2

}
. (2.28)

Simple extension to multivariate The simplest extension to multivariate case is via the DCC(1,1)-

GARCH framework, by replacing the conditional variance equation (2.19) by

D2
t = diag (ωi) + diag (βi)⊗D2

t−1 + diag (γi)⊗Xt−1
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where the diagonal matrix D2
t consists of log h1,t, . . . , log hN,t, and Xt of log x1,t, . . . , log xN,t, and

is related to D2
t by the usual measurement equation (cf. (2.24))

log xi,t = ξi + ϕi log hi,t + τ(zi,t) + ui,t.

Essentially, the proposed extension replaces the �rst stage of DCC-GARCH by RealGarch(1,1), the

output of which is then fed into the second stage to estimate the conditional correlation given by

Rt = diag (Qt)
−1/2

Qtdiag (Qt)
−1/2

Qt =
(

1− α̃− β̃
)
Q+ α̃εt−1ε

>
t−1 + β̃Qt−1,

where Q = E
[
εt−1ε

>
t−1

]
is the unconditional correlation matrix of the standardized residual. The

key assumption for this extension is that we conjecture that correlation varies at a much slower

time scale than does the volatility for each asset. This enables us to simply plug-in the variance

estimations based on Realized GARCH, normalize our return series, than estimate the correlation

component exactly as before.

2.2.2 Empirical Analysis

Data Our sample spans the period from 2002-01-01 to 2008-08-31, which we divide into an in-

sample period: 2002-01-01 to 2007-12-31; leaving the eight months, 2008-01-02 and 2008-08-31, for

out-of-sample analysis. We adopt the realized kernel as the realized measure, xt, using a Parzen

kernel function. This estimator is similar to the well known realized variance, but is robust to market

microstructure noise and is a more accurate estimator of the quadratic variation. Our implemen-

tation of the realized kernel follows Barndor�-Nielsen, Hansen, Lunde, and Shephard (2008a) that

guarantees a positive estimate, which is important for our log-linear speci�cation. The exact com-

putation is explained in great details in Barndor�-Nielsen, Hansen, Lunde, and Shephard (2009).

When we estimate a Realized GARCH model using open-to-close returns we should expect xt ≈ ht,
whereas with close-to-close returns we should expect xt to be smaller than ht on average.

To avoid outliers that would result from half trading days, we removed days where high-frequency

data spanned less than 90% of the o�cial 6.5 hours between 9:30am and 4:00pm. This removes

about three daily observation per year, such as the day after Thanksgiving and days around Christ-

mas. When we estimate a model that involves log r2
t , we deal with zero returns by substituting

min{s<t:r2
s>0} log r2

t for log 0.

Result In this section we present empirical results using returns and realized measures for 28 stocks

and and exchange-traded index fund, SPY, that tracks the S&P 500 index. We adopt the realized

kernel, introduced by Barndor�-Nielsen et al. (2008b), as the realized measure, xt. We estimate the

realized GARCH models using both open-to-close returns and close-to-close returns. High-frequency

prices are only available between �open� and �close�, so the population quantity that is estimated

by the realized kernel is directly related to the volatility of open-to-close returns, but only captures

some of the volatility of close-to-close returns.

Next we consider Realized GARCH models with a log-linear speci�cation of the GARCH and

measurement equations. For the purpose of comparison we estimate an LGARCH(1,1) model in
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addition to the six Realized GARCH models. Again we report results for both open-to-close returns

and close-to-close returns for SPY. The results are presented in Table 2.

The main results in Table 2 can be summarized by:

. ARCH parameter, α, is insigni�cant.

. Consistent with the log-linearity we �nd ϕ ' 1 for both open-to-close and close-to-close returns.

We report empirical results for all 29 assets in Table 3 and �nd the point estimates to be remarkable
similar across the many time series. In-sample and out-of-sample likelihood ratio statistics are
computed in Table 4.

Table 4 shows the likelihood ratios for both in-sample and out-of-sample period. The statistics

are based on our analysis with open-to-close returns. The statistics in Panel A are the conventional

likelihood ratio statistics, where each of the �ve smaller models are benchmarked against the largest

model. The largest model is labeled (2,2). This is the log-linear RealGARCH(2,2) model that has the

squared return r2
t in the GARCH equation in addition to the realized measure. Thus the likelihood

ratio statistics are in Panel A are de�ned by

LRi = 2
{
`RG(2,2)∗(r, x)− `i(r, x)

}
,

where i represents one of the �ve other Realized GARCH models. In the QMLE framework the limit

distribution of likelihood ratio statistic, LRi, is usually given as a weighted sum of χ2-distributions.

Thus comparing the LRi to the usual critical value of a χ2-distribution is only indicative of signi�-

cance.

Comparing the RealGARCH(2,2)∗ to RealGARCH(2,2) leads to small LR statistics in most cases.

So α tends to be insigni�cant in our sample. This is consistent with the existing literature that �nds

that squared returns adds little to the model, once a more accurate realized measure is used in the

GARCH equation.

The leverage function, τ(zt), is highly signi�cant in all cases. The LR statistics associated with

the hypothesis that τ1 = τ2 = 0 are well over 100 in all cases. These statistics can be computed

by subtracting the statistics in the column labeled (2,2) from those in the column labeled (2,2)†.

The joint hypothesis, β2 = γ2 = 0 is rejected in most cases, and so the empirical evidence does not

support a simpli�cation of the model to the RealGARCH(1,1). The results for the two hypotheses

β2 = 0 and γ2 = 0 are less conclusive. The likelihood ratio statistics for the hypothesis, β2 = 0
are, on average, 5.7, which would be borderline signi�cant when compared to conventional critical

values from a χ2
(1)-distribution. The LR statistics for the hypothesis, γ2 = 0, tend to be larger

and are on average 16.6. So the empirical evidence favors the RealGARCH(1,2) model over the

RealGARCH(2,1) model.

Consider next the out-of-sample statistics in Panel B. These likelihood ratio (LR) statistics are

computed as √
n

m
{`RG(2,2)(r, x)− `j(r, x)},

where n and m denote the sample sizes, in-sample and out-of-sample, respectively. The in-sample

parameter estimates are simply plugged into the out-of-sample log-likelihood, and the asymptotic

distribution of these statistics are non-standard because the in-sample estimates do not solve the

�rst-order conditions out-of-sample, see Hansen (2009). The RealGARCH(2,2) model nests, or is
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nested in, all other models. For nested and correctly speci�ed models where the larger model has

k additional parameters that are all zero (under the null hypothesis) the out-of-sample likelihood

ratio statistic is asymptotically distributed as√
n

m
{`i(r, x)− `j(r, x)} d→ Z ′1Z2, as m,n→∞ with m/n→ 0,

where Z1 and Z2 are independent Zi ∼ Nk(0, I). This follows from, for instance, Hansen (2009,

corollary 2), and the (two-sided) critical values can be inferred from the distribution of |Z ′1Z2|. For
k = 1 the 5% and 1% critical values are 2.25 and 3.67, respectively, and for two degrees of freedom

(k = 2), these are 3.05 and 4.83, respectively. When compared to these critical values we �nd,

on average, signi�cant evidence in favor of a model with more lags than RealGARCH(1,1). The

statistical evidence in favor of a leverage function is very strong. Adding the ARCH parameter,

α, will (on average) result in a worse out-of-sample log-likelihood. As for the choice between the

RealGARCH(1,2), RealGARCH(2,1), and RealGARCH(2,2) the evidence is mixed.

In Panel C, we report partial likelihood ratio statistics, that are de�ned by 2{maxi `i(r|x) −
`j(r|x)}, so each model is compared with the model that had the best out-of-sample �t in term of

the partial likelihood. These statistics facilitate a comparison of the Realized GARCH models with

the standard GARCH(1,1) model, and we see that the Realized GARCH models also dominate the

standard GARCH model in this metric. This is made more impressive by the fact that Realized

GARCH models are maximizing the joint likelihood, and not the partial likelihood that is used in

these comparisons.8

The leverage function, τ(z) is closely related to the news impact curve that was introduced by

Engle and Ng (1993). High frequency data enable are more more detailed study of the news impact

curve than is possible with daily returns. A detailed study of the news impact curve that utilizes

high frequency data is Ghysels and Chen (2010). Their approach is very di�erent from ours, yet the

shape of the news impact curve they estimate is very similar to ours. The news impact curve shows

how volatility is impacted by a shock to the price, and our Hermite speci�cation for the leverage

function presents a very �exible framework for estimating the news impact curve. In the log-linear

speci�cation we de�ne the new impact curve by

ν(z) = E(log ht+1|zt = z)− E(log ht+1),

so that 100ν(z) measures the percentage impact on volatility as a function of return-shock mea-

sures in units of standard deviations. As shown in Section 2.2.1 we have ν(z) = γ1τ(z). We have

estimated the log-linear RealGARCH(1,2) model for both IBM and SPY using a �exible leverage

function based on the �rst four Hermite polynomials. The point estimates were (τ̂1, τ̂2, τ̂3, τ̂4) =
(−0.036, 0.090, 0.001,−0.003) for IBM and (τ̂1, τ̂2, τ̂3, τ̂4) = (−0.068, 0.081, 0.014, 0.002) for SPY.

Note that the Hermite polynomials of orders three and four add little beyond the �rst two polyno-

mials. The news impact curves implied by these estimates are presented in Figure 2.3. The fact that

ν(z) is smaller than zero for some (small) values of z is an implication of its de�nition that implies,

E[ν(z)] = 0.

8There is not a well developed theory for the asymptotic distribution of these statistics, in part because we are
comparing a model that maximizes the partial likelihood (the GARCH(1,1) model) with models that maximizes the
joint likelihood (the Realized GARCH models).
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Figure 2.3: News impact curve for IBM and SPY

The estimated news impact curve for IBM is more symmetric about zero than that of SPY, and

this empirical result is fully consistent with the existing literature. The most common approach to

model the news impact curve is to adopt a speci�cation with a discontinuity at zero, such as that used

in the EGARCH model by Nelson (1991), τ(z) = τ1z+τ+(|z|−E|z|).We also estimated the leverage

functions with the piecewise linear function that leads to similar empirical results. Speci�cally, the

implied news impact curves have the most pronounced asymmetry for the index fund, SPY, and the

two oil related stocks, CVX and XOM. However, the likelihood function tends to be larger with the

polynomial leverage function, τ(z) = τ1z + τ2(z2 − 1), and the polynomial speci�cation simpli�es

aspects of the likelihood analysis.

For the multivariate case, an application of the proposed DCC(1,1)-RealGARCH(1,1) extension

to the univariate Realized GARCH model is illustrated by using four stocks, IBM, XOM, SPY

and WMT, with �tted result shown in Table 5. Note that this simple extension is a proof of

concept of how the RealGARCH framework can be extended to deal with covariance estimation, as

a straightforward plug-in to an existing establish framework. The assumption that volatility changes

more frequently than the underlying correlation of stocks is justi�able for typical portfolio holding

horizon measured in days or longer. Here we can draw on the result of empirical analysis for the

univariate case and expect similar predictive gain for this proposed extension. More sophisticated

frameworks would be bene�cial when we need to deal with cases where both volatility and correlation

are highly non-stationary, and change on a comparable time scale. This is an area for future research.
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IBM XOM SPY WMT
h0 0.76 1.17 0.28 2.39
ω -0.00 0.04 0.06 -0.03
β 0.64 0.59 0.55 0.66
γ 0.36 0.30 0.41 0.30
ξ 0.01 -0.10 -0.18 0.12
ϕ 0.94 1.27 1.04 1.04
τ1 -0.04 -0.08 -0.07 -0.01
τ2 0.08 0.08 0.07 0.09
σu 0.39 0.38 0.38 0.40

α̃ β̃
0.018 0.952

Table 5: Fitted result for DCC(1,1)-RGARCH(1,1)
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3 Asset Return Estimation and Prediction

In the mean-variance portfolio optimization framework, mean often refers to some prediction of

future asset return. Essentially, the framework requires a forecast for the �rst two moments of

the joint distribution of an universe of assets under consideration. Of course, in a jointly Gaussian

setting, these are the only two moments needed for deriving some objective value based on a suitably

chosen utility function. As it is now commonly acknowledged, asset returns are far some Gaussian

and often exhibit characteristic tail and asymmetric behavior that are distinctly di�erent to a simple

Gaussian distribution. Whether it is essential to take these added complexity into account depends

on the problem at hand and on the reliability of whether these stylized facts can be adequately

estimated, and important signals extracted, from the underlying inherently noisy observations.

Given the signi�cant amount of improvement in pro�tability from being able to increase just a

small fraction of the investor's edge over a random estimation, a lot of e�ort have been spent on

modeling this �rst moment of the asset return dynamics.

3.1 Outline of Some Commonly Used Temporal Models

Random Walk If we assume that the underlying return process is a symmetric random walk,

then the one step ahead prediction is simply equal to the current return. That is,

rt+1| Ft = rt + εt+1,

where rt ∈ RN is the vector of returns often de�ned as the di�erence in the logarithm of prices, and

εt is a Ft-adapted, zero-mean, iid random variable. This is not a model per se, but a benchmark

that are often used to compare the predictive gain of di�erent modeling frameworks.

Auto-Regressive-Moving-Average (ARMA) models ARMAmodel (see for example Box and

Jenkins (1976)) combines the ideas of auto-regressive (AR) and moving average (MA) models into

a compact and more parsimonious form so that the number of parameters used is kept small. Note

that GARCH, mentioned in Section (2), can be regarded as an ARMA model. There are a number

of variations of this versatile framework.

Example 27. Simple ARMA

The classic ARMA(p,q) framework is given by

Φ (B) rt = Θ (B) εt

ε ∼ N (0, 1) ,

where Φ (B) = 1 −
∑p
i=0 φiB

i, Θ (B) = 1 −
∑q
i=0 θiB

i, B is the lag operator, and {εt} is an iid

Gaussian innovation series. The series, rt, is said to be unit-root stationary if the zeros of Φ (z) are
outside the unit circle. For non-stationary series, appropriate di�erencing needs to be applied �rst

before we can estimate the parameters of the model (Box and Jenkins, 1976). The lag order (i.e.

the value for p and q) selection can be done iteratively via the Akaike Information Criterion (AIC)

value of the �tted result. Recall that

AIC = 2k − 2 logL,
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where k is the number of parameters in the model and L is the likelihood function. The model

�tting algorithm iteratively increase the lag order and select the �nal complexity with the lowest

AIC.

Example 28. ARMA with Wavelet Smoothing

Market microstructure noises, such as bid-ask bounce and price quantization, usually have the

maximum impact for sampling frequency in the region of 5 to 20 minutes (Andersen et al., 2001c).

To e�ectively �lter out these noises, we can �rst decompose the raw return series, rt, into di�erent

resolutions, or more precisely di�erent levels of wavelet details, by an application of wavelet multi-

resolution analysis (MRA) (Mallat, 1989), followed by reconstitution of the time series signal by using

a subset of wavelet details so that details below a threshold are �ltered out. Recall by de�nition of

discrete wavelet transform (DWT)

W =Wrt,

where W ∈ RN×N is the orthogonal real-valued matrix de�ning the DWT. Consider the decomposi-

tion of the vector W into J + 1 sub-vectors, so that W = (W1, . . . ,WJ , VJ)>, where Wj is a column

vector with N/2j elements9 and 2J = N . So we have

rt =W>W =
N−1∑
n=0

WnWn� =
J∑
j=1

W>j Wj + V>J VJ :=
J∑
j=1

Dj + SJ , (3.1)

which de�nes a MRA of our return series rt, consists of a constant vector SJ and J levels of

wavelet detail Dj , j = 1, . . . , J , each of which contains a time series related to variations in rt

at a certain scale. Wn� is the n-th row of the DWT matrix. Wj and Vj matrices are de�ned by

partitioning the rows of W commensurate with the partitioning of W into W1, . . . ,WJ and VJ . By

discarding the �rst K−1 levels of detail, we obtain a series that is a locally �ltered, smoothed series,

r̃t =
∑J
j=K Dj + SJ , which retains features with time scales larger than a predetermined threshold.

Finally, a simple ARMA model is �tted to this �ltered series,

Φ (B) r̃t = Φ (B) εt

ε ∼ N (0, 1) ,

where again, AIC can be used to select the optimal lag parameters.

Example 29. ARMA-GARCH

To account for heteroskedasticity of the return series, we can jointly �t an ARMA and GARCH

model, for example an ARMA(1,1)-GARCH(1,1) framework on the raw return series, rt, so that

Φ (B) rt = Θ (B) εt

ht = α0 + α1r
2
t−1 + β1ht−1

εt ∼ N (0, ht) .

9For cases where N is not an integral power of 2, we can simply truncate and discard some part of the data series,
or, refer to Mallat (1989) if it is necessary to treat it as a special case.
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As in Example (27), the algorithm �rst uses AIC to determine the optimal lag parameters (p*,q*)

for the ARMA framework then, holding the parameter values constant, it �ts an ARMA(p*,q*)-

GARCH(1,1) model by maximizing the likelihood a Gaussian density for the innovation, {εt}.
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Figure 3.1: Output of three variations of the ARMA time series framework. Black circles are actual
data-points and red dash-lines indicate the next period predictions. Top panel: simple ARMA;
Center panel: ARMA with wavelet smoothing; Bottom panel: ARMA-GARCH. Dataset used is
the continuously rolled near-expiry E-mini S&P 500 futures contract traded on the CME, sampled
at 5 minute intervals. Sample period shown here is between 2008-05-06 13:40:00 and 2008-05-07
15:15:00. At each point, we �t a model using the most recent history of 1,000 data points, then
make a 1-period ahead forecast using the �tting parameters.

See Figure 3.1 for predictions versus actual output for models given in the three examples above,

all based on some variations of the ARMA framework.

Innovations State Space Model The innovations state space model can be written in terms of

the underlying measurement and transition equations

yt = w (xt−1)xt−1 + r (xt−1) εt

xt = f (xt−1)xt−1 + g (xt−1)⊗ εt

where yt denotes the observation at time t, and xt denotes the state vector containing unobserved

components that describe the level, trend and seasonality of the underlying time series; {εt} is a white
noise series with zero mean and constant variance σ2. Hyndman et al. (2000) gives a comprehensive

treatment of frameworks that belong to this class of models and propose a methodology of automatic
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forecasting that takes into account trend, seasonality and other features of the data. They cover

24 state space models in their framework that include additive and multiplicative speci�cations for

the seasonal component and an additional damped speci�cation for the trend component. Model

selection is done using the AIC of the �tted models.

The general formulation of innovative state space model also include additive Holt-Winters (see

Holt, 1957 and Winters, 1969) as a speci�c instance. Recall the Holt-Winters Additive Model has

the following speci�cation
lt = α (yt − st−m) + (1− α) (lt−1 + bt−1) Level

bt = β (lt − lt−1) + (1− β) bt−1 Growth

st = γ (yt − lt−1 − bt−1) + (1− γ) st−m. Seasonal

The h-step ahead forecast is then given by

ŷ t+h|t = lt + bth+ st−m+h+
m

where h+
m = (h+ 1)modm+ 1. If we de�ne εt , ŷ t|t−1 − yt, then the Holt-Winters Additive Model

can be expressed in the linear innovation framework as

yt =
[

1 1 1
]
xt−1 + εt

xt =

 1 1 0
0 1 0
0 0 1

xt−1 +

 α

αβ

γ

⊗ εt,

where the state vector xt =
(
lt bt st−m

)>
. This is an example of a linear innovations state

space model.

Figure 3.2 compares the 1-period predicted return with the actual realized return for the sample

period between 2008-05-06 13:40:00 and 2008-05-07 15:15:00. At each point, we �t a model using

the most recent history of 1,000 data points, then make a 1-period ahead forecast using the �tting

parameters.

Neural Network Neural network is a popular subclass of nonlinear statistical models. See Hastie

et al. (2003) for a comprehensive treatment of this class of models. The structural model for a

feed forward - back propagation network, also known as multilayer percetrons in the neural network

literature, is given by

F (x) =
M∑
m=1

bmS

a0m +
m∑
j=1

ajmxj

+ b0

where S : R→ (0, 1) is known as the activation function, and
{
bm {ajm}M0

}M
0

are the parameters

specifying F (x). Figure 3.3 illustrates a simple feed-forward neural network with four inputs, three

hidden activation units and one output. For illustration purpose, a (15,7,1) neural net is �tted to

the same dataset, with tan-sigmoid, S (x) = ex−e−x/ex+ex, as the activation function for the hidden

layer. The model inputs include lagged returns, lagged trading direction (+1 for positive return and

-1 for negative return) indicators and logarithm of the ratio of market high to market low prices,
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Figure 3.2: Output based on AIC general state space model following Hyndman et al. (2000) and
the Holt-Winters Additive models. Black circles are actual data-points and red dash-lines indicate
the next period predictions. Dataset used is the continuously rolled near-expiry E-mini S&P 500
futures contract traded on the CME, sampled at 5 minute intervals. Sample period shown here is
between 2008-05-06 13:40:00 and 2008-05-07 15:15:00. At each point, we �t a model using the most
recent history of 1,000 data points, then make a 1-period ahead forecast using the �tting parameters.

de�ned over a look-back period of 1,000 observations, as a proxy for volatility. Figure 3.4 shows the

model output.

3.2 Self Excited Counting Process and its Extensions

Until recently, the majority of time series analyses related to �nancial data has been carried out using

regularly spaced price data (see Section 3.1 for the outline of some commonly used models based

on equally spaced data), with the goal of modeling and forecasting key distributional characteristics

of future returns, such as expected mean and variance. These time series data mainly consist of

daily closing prices, where comprehensive data are widely available for a large set of asset classes.

With the recent rapid development of high-frequency �nance, the focus has shifted to intra-day

tick data, which record every transaction during market hours, and come with irregularly spaced

time-stamps. We could resample the dataset and apply the same analyses as before, or we could try

to explore additional information that the inter-arrival times may convey in terms of likely future

trade direction.

In order to take into account of these irregular occurrences of transactions properly, we can adopt

the framework of a point process. In a doubly stochastic framework (see Bartlett, 1963), both the

counting process and the driving intensity are stochastic. A point process is called self-excited if the
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Figure 3.3: Diagrammatic illustration of a feed-forward (4,3,1) neural network.

current intensity of the events is determined by events in the past, see Hawkes (1971). It is widely

accepted and observed that volatility of price returns tends to cluster. That is, a period of elevated

volatility is likely to be followed by periods of similar levels of volatility. Trade arrivals also exhibit

such clustering e�ect (Engle and Russell, 1995), for example a buy order is likely to be followed

closely by another buy order. These orders tend to cluster in time.

There has been a growing amount of literature on the application of point process to model

inter-arrival trade durations, see for example Engle and Russell (1997), and Bowsher (2003) for a

comprehensive survey of the latest modeling frameworks.

This section of the thesis extends previous work on the application of self-excited process to model

high frequency �nancial data. The extension comes in the form of a marked version of the process

in order to take into account trade size in�uence on the underlying arrival intensity. In addition,

by incorporating information from the limit order book (LOB), the proposed framework takes into

account a measure of supply-demand imbalance of the market by parametrize the underlying base

intensity as a function of this imbalance measure. Given that the main purpose of this section is

to outline the methods to incorporate trade size and order-book information in a self-excited point

process framework, empirical comparison of the proposed framework to other similar and related

models are reserved for future research.

For a comprehensive introduction to the theory of point process, see Daley and Vere-Jones (2003)

and Bremaud (1980). The following sub-sections give a brief outline of the self-excited point process

framework in order to motivate the extensions that follow in Section 3.2.3.

3.2.1 Univariate Case

Consider a simple counting process for the number of trade events, Nt, characterized by arrival time

of the trades, {ti}i∈{0,1,2,...T}, a sequence of strictly position random variable on the probability

space (Ω,F ,P), such that t0 = 0 and 0 < ti ≤ ti+1 for i ≥ 1. We allow the intensity of the process

be itself stochastic, characterized by the following Stieltjes integral

λt = µ+
ˆ
u<t

h (t− u) dNu
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Figure 3.4: Output based on a feed-forward (15,7,1) neural network. Black circles are actual data-
points and red dash-lines indicate the next period predictions. Dataset used is the continuously rolled
near-expiry E-mini S&P 500 futures contract traded on the CME, sampled at 5 minute intervals.
Sample period shown here is between 2008-05-06 13:40:00 and 2008-05-07 15:15:00. At each point,
we �t a model using the most recent history of 1,000 data points, then make a 1-period ahead
forecast using the �tting parameters.

where (Nt : t ≥ 0) is a non-explosive counting process with intensity λt−, µ is the base intensity, and

h :R+ → R+ is a non-negative function that parametrizes the self-excitation behavior.

Proposition 30. Univariate Hawkes Process. Let λt be the intensity of the counting process of a

particular form of the self-excited process that, under the usual assumptions, satis�es the following

stochastic di�erential equation (SDE)

dλt = β (ρ (t)− λt) dt+ αdNt.

Assuming that ρ (t) ≡ µ, then the solution for λt can be written as

λt = µ+ α

ˆ t

0

e−β(t−u)dNu (3.2)

where µ is known as the long run or base intensity, i.e. the intensity if there has been no past arrival.

The linkage between the intensity and the underlying counting process Nt is via the Doob-Meyer

decomposition and the two associated �ltrations Ht ⊂ Ft, one for the intensity and the other for
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the jump time, given by the following sigma-algebras

Ht = σ {λs : s ≤ t}

and

Ft = σ {Ns : s ≤ t} .

The characteristic function can be written as

E
[
eiυ(Ns−Nt)

∣∣∣Ft] = e−Ψ(υ)(Λs−Λt)

where Ψ (υ) = 1− eiυ; Λt =
´ t

0
λudu is known as the compensator of the process, and Mt = Nt−Λt

is a Ft-adapted martingale. Conditional on the realization of the compensator, the process is non-

homogeneous Poisson with deterministic intensity

lim
δt→0

1
δt

E [Nt+δt −Nt| Ft] = lim
δt→0

1
δt

E [E [Λt+δt − Λt|Ht ∨ Ft]| Ft]

= lim
δt→0

1
δt

E

[ˆ t+δt

t

λudu

∣∣∣∣∣Ft
]

= λt.

We can simulate this self-excited intensity process by the usual thinning method (Ogata, 1981).

Figure 3.5 shows one particular realization of the simulated process. Note the clustering of intensity

as a result of the self-excitation feature of the modeled process.

To obtain the compensator Λt, a simple piecewise integration of the intensity gives

ˆ t

0

λ (u) du =
ˆ t

0

µdu+
ˆ t

0

∑
ti<u

αe−β(u−ti)du

= µt− α

β

∑
ti<t

(
e−β(t−ti) − 1

)
.

Theorem 31. Time Change Theorem (see for exampleDaley and Vere-Jones (2003) for a more

rigorous treatment). Given a point process with a conditional intensity function λt, de�ne the time-

change

Λt =
ˆ t

0

λ (u) du

where the �ltration Ht = σ {0 < t1 < t2, ..., ti ≤ t}. Assume that Λt < ∞ a.s. ∀t ∈ (0, T ], then
{Λ (ti)}i=0,1,...,n is a standard Poisson process.

By application of this time change theorem, we can transform an univariate Hawkes process back

to a standard Poisson process. The transformed process can then be referenced against theoretical

quantiles in order to assess goodness-of-�t, as it is done in Section 3.2.4.

3.2.2 Bivariate Case

In a multivariate setting, in addition to self-excitation, there is the possibility of cross-excitation, for

which jumps of one process can elevate intensity and hence induce jump in other processes. A linear
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Figure 3.5: Simulated intensity of an univariate Hawkes process, with µ = 0.3, α = 0.6 and β = 1.2.

bivariate self-excited process with cross-excitation can be expressed, by modifying (3.2), to give
λ1 (t) = µ1 +

´ t
0
υ11 (t− s) dN1 (s) +

´ t
0
υ12 (t− s) dN2 (s)

λ2 (t) = µ2 +
´ t

0
υ22 (t− s) dN2 (s) +

´ t
0
υ21 (t− s) dN1 (s)

(3.3)

where we could consider λ1 and λ2 as the intensity of market orders traded on the bid and ask sides,

respectively. Note that market orders traded on bid side are sell orders and those on the ask side

are buy orders. Consider the following parametrization with exponential decay,

υij (s) = αije
−βijs, βij ≥ 0

then we can rewrite the Stieltjes integral in (3.3) as
λ1 (t) = µ1 +

∑
ti<t

α11e
−β11(t−ti) +

∑
tj<t

α12e
−β12(t−tj)

λ2 (t) = µ2 +
∑
tj<t

α22e
−β22(t−tj) +

∑
ti<t

α21e
−β21(t−ti)

where ti and tj are Ft-adapted jump times for bid and ask side market orders, respectively. This

exponential parametrization is in reasonable agreement with empirical �ndings, as illustrated in

Figure 3.6 which shows the empirical conditional intensity.

Figure 3.7 shows a particular realization of a simulated bivariate intensity process. Observe the

cross-excitation dynamics between the two processes and the exponential decay after each jump.
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Figure 3.6: Conditional intensity of bid and ask side market orders following an order submitted on
the bid side of the market, estimated with bin size ranging from 30 to 500 milliseconds, using BP
tick data on 25 June 2010.

To obtain the compensator Λ1 (t), we can integrate the intensity piecewise to give

ˆ t

0

λ1 (u) du =
ˆ t

0

µ1du+
ˆ t

0

∑
ti<u

α11e
−β11(u−ti)du+

ˆ t

0

∑
tj<u

α12e
−β12(u−tj)du

= µ1t+
α11

β11

∑
ti<t

(
1− e−β11(t−ti)

)
+
α12

β12

∑
tj<t

(
1− e−β12(t−tj)

)
and similarly for Λ2 (t).

Proposition 32. The log-likelihood function for the bivariate process can be written as (Ogata,

1978)

LT (µ1, µ2, β11, β12, β21, β22, α11, α12, α21, α22) = L
(1)
T (µ1, β11, β12, α11, α12) (3.4)

+L(2)
T (µ2, β21, β22, α21, α22) (3.5)

where

L
(1)
T (µ1, β11, β12, α11, α12) = −µ1T −

α11

β11

∑
ti<T

(
1− e−β11(T−ti)

)
− α12

β12

∑
tj<T

(
1− e−β12(T−tj)

)
+

∑
{i:ti<T}

log (µ1 + α11R11 (i) + α12R12 (i))
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Figure 3.7: Simulated intensity of a bivariate Hawkes process. Path in blue (top) is a realization
of the λ1 process; path in red (bottom) is that of the λ2 process, inverted to aid visualization.
Parameters: µ1 = µ2 = 0.5, α11 = α22 = 0.8, α12 = α21 = 0.5, β11 = β12 = 1.5 and β22 = β21 = 1.5.

with the following recursion

R11 (i) = e−β11(ti−ti−1) (1 +R11 (i− 1))

R12 (i) = e−β12(ti−ti−1) (R12 (i− 1)) +
∑

{j′:ti−1≤tj′<ti}
e−β12(ti−tj′)

and similarly for L
(2)
T (µ2, β21, β22, α21, α22), R22 and R21. Note by setting α12 and α21 to zero, we

recover the log-likelihood functions for the univariate case.

3.2.3 Taking volume and orderbook imbalance into account

For trading on the major US stock exchanges such as NYSE and NASDAQ, most transactions are

in round lots, the normal size of trading for a security, which is generally 100 shares or more. Odd

lot orders are orders with size less than the minimum round lot amount, and these orders have less

favorable queue positioning and may incur additional clearing fees at the exchanges. See rules posted

by the exchanges for a comprehensive treatment of the regulation and requirements related to odd

lot execution and other transaction related rules (e.g. Rule 124(c) of the NYSE Rules). Since the

trade size is decided by the order originator, it is a potential source of information. See for example

Bouchaud et al. (2002) for a study of the statistical properties of market order size. Let w1i and

w2j be the trade sizes for bid and ask side market orders at time ti and tj , respectively. Then the
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resulting intensity for the marked point process can be written as
λ1t = µ1 + 1

w̄1

∑
ti<t

α11w1ie
−β11(t−ti) + 1

w̄2

∑
tj<t

α12w2je
−β12(t−tj)

λ2t = µ2 + 1
w̄2

∑
tj<t

α22w2je
−β22(t−tj) + 1

w̄1

∑
ti<t

α21w1je
−β21(t−ti)

where w̄1 and w̄2 are the simple averages of trade size over the period,

{ti : 0 ≤ ti < t} ∪ {tj : 0 ≤ tj < t} .

The intuition behind this functional form is straightforward - by giving more weight to trades

accompanied by larger size, we are implicitly conjecturing that these trades convey more information

than smaller, noise trades.

Proposition 33. The log-likelihood function for the intensity process with trade size marks can be

expressed as

L
(1)
T (µ1, β1, α11, α12) = −µ1T −

α11

β11

∑
ti<T

w1i

w̄1

(
1− e−β11(T−ti)

)
− α12

β12

∑
tj<T

w2j

w̄2

(
1− e−β12(T−tj)

)
+

∑
{i:ti<T}

log (µ1 + α11R11 (i) + α12R12 (i)) ,

with the following recursion

R11 (i) = e−β11(ti−ti−1)

(
w1i

w̄1
+R11 (i− 1)

)
R12 (i) = e−β12(ti−ti−1) (R12 (i− 1)) +

∑
{j′:ti−1≤tj′<ti}

w2j′

w̄2
e−β12(ti−tj′),

and similarly for L
(2)
T (µ2, β21, β22, α21, α22), R22 and R21.

The limit order book (LOB) is a trading method used by most electronic exchanges globally. It

is an anonymous trading system that matches buyer and sellers by aggregating demands from both

sides into a �trading book�. At any time instance, the LOB contains multiple layers on the bid and

ask sides of the book. Each layer corresponds to a di�erent price level, normally separated by the

minimum price increment. For most US exchanges, this minimum increment is $0.01 for most stocks.

Market agents have several options when it comes to placing an order to buy or sell securities. For

example, limit order and market order are the two most common order types. A limit orders is an

order to buy or sell a speci�c amount of shares of a stock at a speci�c price. When a limit order

arrives into the exchange's order management system, it joins the bid or ask order queue at the price

level speci�ed by the order. The only change to the LOB that is visible to other market agents is

an increase of queue size at that layer - no other information is disseminated. A market order is an

order to buy or sell a stock at the current market price. For example, a market order to sell 1,000

IBM shares will take out 1,000 lots of liquidity at the top layer of the bid side of the order book.

If the available liquidity is less than 1,000 at that level, the order will continue to execute at the

next layer of the bid side order book with a lower price. This continues until 1,000 lots have been

�lled. The advantage of a market order is that it is almost always guaranteed to be executed. The
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disadvantage is that the price one pays or gets depends on available liquidity of the market and the

speed the order book changes over the short period of time10 during which the market order seeks

out liquidity.

Figure 3.8 shows snapshots of the evolution of a limit order book. For ease of visualization, the

order queue at each time instance is scaled by the maximum size at that instance, across the whole

book. Observe that the shape of the queue pro�le on both sides of the book varies as the price

changes. The pro�le of the order book signals potential supply-demand imbalance of the market,

and changes in this pro�le convey information of investor's reaction to price changes.

An appropriately de�ned buy-sell imbalance measure will help extract information of the likely

change in trade direction and intensity over the short run. Imbalance, when de�ned simply as the

di�erence between total aggregate buy and sell orders, ignores the important fact that orders at

di�erent layers of the book have signi�cantly di�erent probability of being executed.

Figure 3.9 shows the expected time, in seconds, it takes for limit orders submitted at speci�c

order-distance (measured in units of median price increments) from the prevailing best bid and ask

prices to get completely �lled. For example, for a limit sell order, a distance of 0 corresponds to a sell

order at the prevailing best bid (i.e. an e�ective market order), and a distance of 1 corresponds to a

sell order at a price which is one price increment higher than the best bid (i.e. at the best ask price).

From this, we can obtain the empirical cumulative distribution of order completion time, and hence

deduce the probability of completion within a speci�c time period for a limit order submitted at a

speci�c number of price increments away from the best bid and ask. Figure 3.10 shows the empirical

probability of a complete limit order �ll within 5 seconds after submission, as a function of order-

distance, assuming that the underlying true price process has zero drift - a reasonable assumption

given the short time frame.

One way to quantify market supply and demand is via a probability weighted volume, de�ned

below.

v̄ (t, τ, L; i) =
1∑

i,l vt,l;i

L∑
l=0

vt,l;ipl,i,τ ,

where pl,i,τ = P ( tf < t+ τ | l, i) is the probability of an order of type i ∈ {1, 2} submitted at layer

l getting completely �lled at time tf , which is within τ seconds from order submission at time t.

vt,l;i is the queue size at time t, at the l-th layer and on side i of the limit order book. Figure 3.11

shows the time series of the di�erence between the bid and ask side probability weighted cumulative

volumes, v̄ (t, τ, L; 1)− v̄ (t, τ, L; 2), for t = {ti : i = 0, 1, . . . , n}.
The base intensity, µ, controls the mean arrival rate of market orders. It is intuitive to conjecture

that when there are more buy limit orders on the bid side of the order book than there are sell orders

on the ask side of the book, the likelihood of an uptick in price increases, and similarly when this

imbalance is reversed. This order book �skew� is a signal of market imbalance, and one method to

incorporate this in a point process framework is by using our probability weighted volume measure

10Note: with the current technological and algorithmic advances of computer driven market making, the order book
can react in less than 50µs.
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Figure 3.9: Time to order completion as a function of order submission distance from the best pre-
vailing bid and ask prices. Distance is de�ned as the number of order book median price increments
from the best top layer prices at the oppose side of the market. For example a distance of 1 corre-
sponds to the top bid and ask prices and a distance of 2 corresponds to the second layer of the bid
and ask sides.

to scale the base intensity of the underlying process, as shown below,
λ1t = µ1v̄2t + 1

w̄1

∑
ti<t

α11w1ie
−β11(t−ti) + 1

w̄2

∑
tj<t

α12w2je
−β12(t−tj)

λ2t = µ2v̄1t + 1
w̄2

∑
tj<t

α22w2je
−β22(t−tj) + 1

w̄1

∑
ti<t

α21w1ie
−β21(t−ti)

where v̄1t = v̄ (t, τ, L; 1) for bid side orders and similarly for v̄2t.

Proposition 34. The log-likelihood function for the intensity process with both trade size mark and

order book information can be expressed as

L
(1)
T (µ1, β1, α11, α12) = −µ1

∑
ti<T

v̄2ti (ti − ti−1)− α11

β11

∑
ti<T

w1i

w̄1

(
1− e−β11(T−ti)

)
−α12

β12

∑
tj<T

w2j

w̄2

(
1− e−β12(T−tj)

)
+

∑
{i:ti<T}

log (µ1v̄2ti + α11R11 (i) + α12R12 (i))

where the recursions R11 and R12 are the same as in Proposition 33, and similarly for L
(2)
T (µ2, β21, β22, α21, α22),

R22 and R21.
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Figure 3.10: Probability of order completion within 5 seconds from submission. Dots are estimated
based on empirical data and solid curve is based on the �tted power law function 0.935x−0.155.

3.2.4 Empirical Analysis

Data The order book data is obtained from the London Stock Exchange (LSE). This Rebuild

Order Book (LSE, 2008) dataset provides full market depth (Level 3) intra-day order information

and trading data, which allows us to reconstruct the complete order book system. The dataset

contains order detail, order deletion and trade detail information. Records are time-stamped to the

nearest millisecond.

British Petroleum PLC (BP) is used to illustrate the modeling framework and �tting process.

Figure 3.12 shows the time series of price and bid-ask spread for 25 June 2010. The code that

performs the order book reconstruction takes order details from the order details record �le, then

chronologically match the trade and deletion information in the order history record �le. The result

of this reconstruction procedure is a time series of snapshots of the order book, at every trade event.

See Figure 3.8 for a 30-second picture of the evolution of the LOB for BP.

The sample period is chosen to be the entire trading day on 25 June 2010, from 08:05:00.000 to

16:25:00.000. The �rst and last 5 minutes near the opening and closing of the market is discarded,

so as to stay clear of the periods near market auctions, where there is often a lot of noise (e.g.

incorrectly recorded orders or transactions) in the data. There are a total of four key orders types:

limit buy, limit sell, e�ective market buy and e�ective market sell. The e�ective market buy orders

include market buy orders and limit orders that are submitted at or through the best ask price; and

similarly for the e�ective market sell order which include market sell order and limit order that are

submitted at or through the best bid price. These are orders submitted with the intention to induce
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Figure 3.11: Time series for the di�erence in bid and ask side LOB probability weighted cumulative
volume, v̄ (t, τ, L; 1)− v̄ (t, τ, L; 2), for BP, on 25 June 2010.

immediate �ll.

De�nition of event For the analyses carried out in this paper, events are de�ned as the execution,

both partial or complete, of buy and sell market orders. For the bid side order intensity, the inter-

arrival times are de�ned to be the time, measured in milliseconds, between two e�ective market

orders at the bid side; and similarly for the ask side orders. Even at this millisecond resolution, the

dataset still contains trades that have taken place in quick successions such that they are stamped

with the same time-stamp11. To be consistent with the de�nition of a simple point process, this

thesis adopts the practice that, for trades stamped with the same time-stamp, it retains only the �rst

trade and discards the rest. Although the dataset contains sequence identi�ers that can potentially

be used to sort trades in chronological order, there still remains the tasks of assigning unique time-

stamps to the sorted trades. See Shek (2007) for analysis of other possible methods to deal with

trades with identical time-stamps.

Figure 3.13 shows the empirical intensity of bid and ask side orders. Here the intensity is

calculated based on the arrival rate of market orders within overlapping one minute windows. Note

the widely observed U-shape activity pro�le, which indicates price discovery is concentrated near

the opening and closing periods of the market. This suggests that we might consider introducing the

extra complexity of modeling the base intensity with a periodic function that matches the observed

activity pro�le, a point not explored in this thesis.

11Note that for liquid stocks, market interaction can and often happen at microsecond resolution.
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Figure 3.12: Top panel: time series for best prevailing bid and ask prices of the limit order book.
Bottom panel: bid-ask spread. Both are for BP, on 25 June 2010.

Maximum Likelihood Estimation result Table 6 gives the parameters �tted by a MLE routine

using the log-likelihood functions derived in the earlier sections. Results for four model speci�cations

are presented here: bivariate, bivariate with trade size mark, bivariate with order book imbalance

mark and bivariate with both trade size and order book imbalance marks. All parameters are

signi�cant (except for the two marked with †) at the 95% level. Some remarks on the �tted result:

. for both the bivariate and the bivariate with LOB marks models, two that best �t the data,

µ1 is larger than µ2, which indicates that the mean intensity of market orders traded on the

bid side is higher than those trade on the ask side; This reconciles with the overall downward

drift of the market on that day, see Figure 3.12;

. self-excitation parameters α11 and α22 are both degrees of magnitude larger than their cross-

excitation counterparts α12 and α21, which suggests that although submitted orders on both

sides of the LOB would induce an overall increase in trading activity, they are more likely to

induce more orders of the same type;

. exponential decay rates β11 and β22 are also signi�cantly larger in magnitude than their cross-

excitation counterparts β12 and β21, which suggests that persistency of intensity due to self-

excitations is higher;

. β12 is higher than β21, which suggests that market orders traded on the ask side is more likely

to induce orders traded on the bid side than do bid side on ask side. This again reconciles

with the overall downward drift of the market on the day.

62



www.manaraa.com

Jun 25
08:05:59

Jun 25
09:30:56

Jun 25
11:00:54

Jun 25
12:30:53

Jun 25
14:00:56

Jun 25
15:30:51

0.
5

1.
0

1.
5

2.
0

2.
5

In
te

ns
ity

, 1
/s

ec

limit bid side
limit ask side

Jun 25
08:06

Jun 25
09:30

Jun 25
11:01

Jun 25
12:30

Jun 25
14:01

Jun 25
15:31

0.
05

0.
15

0.
25

0.
35

In
te

ns
ity

, 1
/s

ec

market bid side
market ask side

Figure 3.13: Unconditional arrival intensity of market and limit order on bid and ask sides of the
order book, estimated using overlapping windows of one minute period, for BP on 25 June 2010.

Goodness of �t To assess the goodness of �t of the proposed models, the Kolmogorov-Smirnov

plot (KS-plot) is used to visualize the relationship between empirical quantiles of the data and

the theoretical quantiles of a reference distribution. Since the time-changed inter-arrival times

lead to a standard, homogeneous, Poisson process, the reference distribution is therefore a standard

exponential distribution. To construct the KS-plot, we �rst transform the time-changed inter-arrival

times to uniform random variables on the interval (0, 1) via the cumulative distribution function

(CDF) of a standard exponential distribution. Then we order the transformed variables from smallest

to largest, and plot these values against the CDF of a uniform distribution. If the model is correctly

speci�ed, then the points should align along the diagonal (Johnson and Kotz, 1972). The con�dence

bounds for the degree of �t can be constructed using the distribution of the Kolmogorov-Smirnov

statistic, which for moderate to large sample sizes, the 99% con�dence bounds are approximately

±1.63/
√
n o� the diagonal, where n is the sample size (Johnson and Kotz, 1972).

Figure 3.14 shows the KS-plot for the empirical inter-arrival times for bid and ask side market

orders, together with the 99% con�dence band and the Kolmogorov-Smirnov statistic. It clearly

shows that a standard Poisson process is not adequate in capturing the dynamics of the underlying

counting process. Figure 3.15 shows the KS-plot for models �tted to data on 25 June 2010, based on

four variations of the framework discussed: bivariate, bivariate with trade size mark, bivariate with

order book imbalance mark and bivariate with both trade size and order book imbalance marks.

The KS-plots indicate that the self-excited point process framework is able to capture a signi�cant

amount of the underlying trading dynamics of market orders, in-sample. Also, it is quite clear
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Bivariate Bivariate
with size mark

Bivariate
with LOB mark

Bivariate
with size & LOB marks

µ1 0.068
(0.002)

0.000†

(0.000)

0.193
(0.005)

0.000†

(0.000)

µ2 0.005
(0.001)

0.005
(0.001)

0.015
(0.002)

0.013
(0.002)

α11 2.726
(0.114)

2.901
(0.129)

2.803
(0.116)

2.900
(0.129)

α22 2.624
(0.126)

2.424
(0.126)

2.631
(0.126)

2.430
(0.126)

α12 0.575
(0.068)

0.004
(0.000)

0.563
(0.068)

0.004
(0.003)

α21 0.002
(0.000)

0.001
(0.000)

0.002
(0.000)

0.001
(0.000)

β11 5.211
(0.217)

6.740
(0.295)

5.418
(0.224)

6.740
(0.295)

β22 6.990
(0.347)

7.659
(0.400)

7.016
(0.349)

7.684
(0.400)

β12 8.422
(1.076)

0.007
(0.001)

8.204
(1.072)

0.007
(0.001)

β21 0.004
(0.001)

0.002
(0.000)

0.004
(0.000)

0.002
(0.000)

l (θ) -16,319 -18.123 -16,208 -18,120

Table 6: MLE �tted parameters for the proposed models; standard errors are given in parenthesis.
Sample date is 25 June 2010. † indicates that the value is not signi�cant at 95% level.

from the plot that, for BP on 25 June 2010, including order size information does not help improve

�t. This apparent lack of information from trade size could be a result of frequently used slicing

algorithms that many trading systems adopt, in which large market orders are broken down into

sizes comparable to the median trade size so as to minimize signaling e�ect. Note that the models

that incorporate size and LOB marks do not nest the plain bivariate unmarked case, so there is no

guarantee that the �tted result for those models will dominate that for the unmarked case. This can

be seen in the KS-plot where for the in-sample period, the unmarked model seems to o�er marginally

better �t statistic. In-sample goodness of �t is only one part of model adequacy veri�cation, we also

need to verify how robust the �tted model is when applied to out-of-sample data.

For in-sample versus out-of-sample assessment, we have used two consecutive days of data to

illustrate the robustness of our �tted models. We �rst estimate the parameters for the models using

data from the in-sample period on 06 July 2009, with result shown in Figure 3.16. Then we apply the

in-sample parameters to the out-of-sample period on 07 July 2009, in order to assess performance

of the di�erent models. From Figure 3.17, we see that all four models are reasonable robust, with

only minor deterioration of performance in the out of sample period. Furthermore, we observe that

the model which incorporates LOB information seems to have given a marginally more robust out-

of-sample performance. Further research, when a more comprehensive dataset becomes available, is

needed to further quantify this observation.
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Figure 3.14: KS-plot for empirical inter-arrival times for market orders on the bid and ask sides of
the market. Dash lines indicate the two sided 99% error bounds based on the distribution of the
Kolmogorov-Smirnov statistic. Also shown is the value of the Kolmogorov-Smirnov test statistic for
the two order types.
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Figure 3.15: KS-plot based on four variations of the framework discussed: bivariate, bivariate with
trade size mark, bivariate with order book imbalance mark and bivariate with trade size and order
book imbalance marks. Fitted to sample data on 25 June 2010. Dash lines indicate the two sided
99% error bounds based on the distribution of the Kolmogorov-Smirnov statistic. Also shown is the
value of the Kolmogorov-Smirnov test statistic for the two order types.
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Figure 3.16: In sample KS-plot for empirical inter-arrival times for market order on the bid and
ask sides of the LOB. Model parameters are �tted with data from in sample period on 06 July
2009 and applied to in sample period on 06 July 2009. Dash lines indicate the two sided 99% error
bounds based on the distribution of the Kolmogorov-Smirnov statistic. Also shown is the value of
the Kolmogorov-Smirnov test statistic for the two order types.
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Figure 3.17: Out of sample KS-plot for empirical inter-arrival times for market order on the bid and
ask sides of the LOB. Model parameters are �tted with data from in sample period on 06 July 2009
and applied to out of sample period on 07 July 2009. Dash lines indicate the two sided 99% error
bounds based on the distribution of the Kolmogorov-Smirnov statistic. Also shown is the value of
the Kolmogorov-Smirnov test statistic for the two order types.
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4 Solving Cardinally Constrained Mean-Variance Optimal Port-

folio

4.1 Literature Review

Portfolio optimization is a classic problem in �nancial economics. The underlying theory analyzes

how wealth can be optimally invested in assets that di�er in regard to their expected return and risk,

and thereby also how risks can be reduced. In the classical one-period Markowitz mean-variance

optimization framework (Markowitz, 1952), asset returns are modeled either under the assumption

of a joint Gaussian distribution, or of a rational investor having a quadratic utility function. Given

these assumptions, Markowitz has shown that the optimal portfolio for the investor is located on

the mean-variance e�cient frontier, in the sense that for all assets on this e�cient frontier, for any

given expected return, there is no other portfolio with lower variance; and for any given variance,

there is no other portfolio with higher expected return. In the two dimensional mean-variance space,

the e�cient frontier is a parabola, whereas for mean-standard-deviation, it is a hyperbola.

Formally, an agent has mean-variance preference if her utility function has the following property

U (Rp) = f (E [Rp] , var (Rp)) , f1 > 0, f2 < 0,

where Rp is the portfolio return, and fk is the partial derivative of the function f with respect to

the k-th coordinate. It assumes that even when the underlying distribution of the portfolio return

is not Gaussian, the investor still only cares about the �rst two moments.

With simple constraints of the original optimization problem and also in the case of many of its

extensions, this problem is readily solvable using a standard quadratic programming (QP) solver, re-

lying on algorithms such as those based on the null-space method, trust-region method or sequential

quadratic-programming, see for example Markowitz (1987) and Perold (1984). However, computa-

tional issues can still arise if problems are very large and solutions are needed quickly. Figure 4.1

illustrates the exponential time complexity of a typical QP, where it can be seen that the time it

takes to solve a QP as a function of problem size, N, scales approximately as O
(
N3
)
.

For practical reasons, such as in presence of transaction costs, fees and other administrative

concerns, we often faces the problem of requiring a constraint that limits the number of assets in

which we can invest as part of a portfolio, out of a large universe of potential candidates. One

classic example is the problem of stock index tracking, where an index with a large number of

constituents needs to be tracked by a portfolio using a much smaller subset of underlying assets.

This leads to the introduction of cardinality constraints, which can increase the complexity of the

problem signi�cantly. In fact, the problem is known to be NP -hard (Shaw et al., 2008) and hence

optimality is not guaranteed in polynomial time. For these type of problems, even at a modest size,

computationally e�ective algorithms do not exist and, up until recently, there has been relatively

little work presented in the literature.

General cardinality constrained quadratic program (CCQP) with linear constraints can be ex-

pressed as
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Figure 4.1: Time complexity of simple QP with only the budget constraint. Problem size is the
number of names in the portfolio. Both axes are in log scale. Result produced using the R built-in
QP solver based on a dual algorithm proposed by Goldfarb and Idnani (1982) that relies on Cholesky
and QR factorization, both of which have cubic complexity.

min
x

f (x) = −c>x+ λx>Hx (4.1)

s.t. Ax ≥ b (4.2)∑
i 1{xi 6=0} = K, (4.3)

where c, x ∈ Rn×1, H ∈ Rn×n is positive de�nite, A ∈ Rm×n, b ∈ Rn×1 and m ≤ n. K is the

cardinality constraint and the scalar λ is known as the relative risk aversion parameter. Let x∗ be

our solution set, the indicator function in (4.3) is given by

1{xi 6=0} =

1 xi ∈ x∗

0 o.w.

In other words, the constraint expressed in (4.3) forces the number of non-zero elements of the

solution vector x be equal to a predetermined scalar, K. Note that there is no explicit non-negativity

constraint of xi ≥ 0 ∀i, hence short selling (i.e. selling what we do not own) is allowed. This

together with the constraint
∑
i xi = 0 gives what is known as a dollar neutral portfolio. It is called

dollar neutral because the dollar exposure on the long part (i.e. the part of the portfolio that consists

of the stocks bought) equals to the exposure on the short part (i.e. the part of the portfolio which
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consists of the stocks that are sold short).

In the context of portfolio construction, x is the proportion of the capital allocation to each asset

in the basket, c is the expected return of N candidate assets, i.e. a portfolio manager's subjective

assessment of the one period ahead forecast of asset returns; H is the corresponding forecast for

the variance-covariance matrix. The matrix A encapsulates M sets of linear constraints needed,

for example, to impose holding limits, maximum leverage, etc. The scalar K limits the number of

di�erent assets the portfolio is allow to hold. c is often modeled using time series analysis based

on historical asset returns together with other covariates that could enhance the forecasting signal,

see Section (3). More sophisticated frameworks explore additional sources of information such as

those embedded in the limit-order-book, see for example Shek (2010). H is often modeled based

on historical returns, H = E
[(
R− R̄

)> (
R− R̄

)]
, where R ∈ RT×N is the return matrix for T

observations of N assets and R̄ is the temporal mean. More sophisticated frameworks explicitly

explore known dynamics, such as clustering e�ect of variances, and rely on using high-frequency

intraday tick-data to enhance forecast power, see Section (2).

The cardinality constraint in (4.3) changes the complexity of the problem from that of an inequal-

ity constrained convex QP to that of a non-convex QP in which the feasible region is a mixed-integer

set with potentially many local optima. Shaw et al. (2008) has reduced a 3-partitioning problem to

a CCQP, hence establishing the NP -hardness of the problem.

Although by construction, the covariance matrix H is positive-de�nite, it is usually ill condi-

tioned. One common method to rectify the problem is by factor analysis, where we decompose the

return matrix into a rank k symmetric matrix, where k � N , and a diagonal matrix, known as the

factor variance and speci�c variance matrix, respectively. In doing so, our implicit prior is that the

aggregate market dynamics is spanned by a set of k orthogonal basis, with the remaining N − k
dimensions spanned by uncorrelated asset speci�c factors.

The type of problems that CCQP represents can be broadly categorized as a mixed-integer

programming (MIP) problem with a quadratic objection function, resulting in a class of problem

know as mixed integer quadratic program (MIQP). A typical CCQP can be expressed as

min
x,y

f (x) = −c>x+ 1
2x
>Hx

s.t. Ax ≥ b∑
i yi = K

yi ≥ xi ≥ −yi i = 1, . . . , N

yi ∈ {0, 1} i = 1, . . . , N,

where we have introduced a binary variable y ∈ {0, 1} to enforce cardinality of the solution set.

Solvers with mixed-integer capability are less readily available than standard convex QP solvers.

One obvious method is via successive truncation, see Algorithm 7, where a sequence of relaxed QP

is solved and, at each iteration, a selection of assets with small or zero weights are truncated o�.

More sophisticated methods, such as branch-and-bound or branch-and-cut, are often used to solve

MIP. Alternatively, the problem can be cast as a generic global optimization problem, then solved by

heuristic based methods such as genetic or di�erential evolution algorithms and simulated annealing.
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4.1.1 Branch-and-bound

Branch-and-bound (B-B) algorithm is one of the main tools used to solve the types of NP -hard

discrete optimization problems to optimality, by essentially searching the complete space of solutions.

Since explicit enumeration is normally impossible due to an exponentially increasing number of

potential solutions, B-B algorithm uses bounds for the objective function combined with the value

of the current best solution, which enable the algorithm to search parts of the solution space more

e�ciently. The algorithm was introduced by Land and Doig (1960), and generalized to non-linear

functions by Dakin (1965). For a detailed overview of some typical B-B algorithms, see Clausen

(2003). For application of B-B in solving CCQP, see for example Bienstock (1995), Ley�er (2001)

and Shaw et al. (2008).

4.1.2 Heuristic methods

Although the objective function of CCQP is convex, given the non-convex nature of the constraints

and hence the overall problem, a number of heuristic methods have been proposed to deal with such

problems. These methods generally fall under the class of adaptive stochastic optimization algo-

rithms which include Genetic Algorithm, Tabu Search and Simulated Annealing, and have been used

extensively to solve global optimization problems with arbitrary objective function and constraints.

Essentially, these methods cast the CCQP as a generic global optimization problem, oblivious to the

underlying structure of the objective function.

. Genetic Algorithms (GA) were introduced by Holland (1975). See, for example, Loraschi et al.

(1995) for application of GA in portfolio optimization problems. An outline of the application

of GA in solving CCQP consists of a four step process. Assuming the cardinality is set to K,

the algorithm starts with a set of K asset portfolios, the population set, then loops over the

following steps:

� Fitness function evaluation - calculate the objective function values for portfolios in the

current population set;

� Selection - re-sample the population set with replacement and with probability being a

function of values from the previous step;

� Crossover - randomly mix assets from this newly created population set;

� Mutation - randomly replace asset from previous step with assets not in the population.

. Tabu Search (TA) is a local search algorithm proposed by Glover (1986). It is similar to other

greedy local search algorithms such as the hill climbing method (see for example Russell and

Norvig (1995)) in that it uses a local search procedure to iteratively move from one solution

to a better solution, until some stopping criterion has been satis�ed. The main di�erentiating

feature of TA is its maintaining a list of solutions that have been visited in the recent past and

a list of prohibited moves that have certain attributes. See Chang et al. (2000) for application

of TA in portfolio optimization.

. Simulated Annealing (SA) is another popular global optimization technique applied to opti-

mization of non-convex problem in large discrete search space, originally proposed by Kirk-

patrick (1984). Compared to greedy algorithms, where only downhill moves are allowed, SA
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allows searches uphill. The probability of an uphill move is controlled by a global parameter,

commonly referred to as the temperature, that is gradually decreased during the process. When

temperature is high, moves can be in almost any random direction.

4.1.3 Linearization of the objective function

The mean absolute deviation (MAD) as opposed to the covariance matrix can be used to measure

risk, as proposed by Konno and Yamazaki (1991), Speranza (1996) and Park et al. (1998), such

that for cases where the returns have zero mean, we use E [|Rx|] instead of x>E
[
R>R

]
x for risk.

Then the cardinality constrained problem can be formulated and solved via linear programming,

with savings in computation. Depending on the structure of the problem, this simpli�cation could

potential lead to signi�cant loss of information (Simaan, 1997).

Both branch-and-bound and heuristic methods are generic methods in the sense that the algo-

rithm does not explicitly explore any speci�c characteristics of the underlying problem. As a result,

these methods are often not the most e�cient way to solve CCQP in a portfolio optimization setting.

In the Sections (4.3) and (4.4), two new methods will be proposed to solve a CCQP. The Global

Smoothing algorithm is an iterative method that �rst transforms CCQP to that of �nding the global

optimum of a problem in continuous variable, then solves a sequence of sub-problems. The Local

Relaxation algorithm exploits the inherent structure of the objective function. It solves a sequence

of small, local, quadratic-programs by �rst projecting asset returns onto a reduced metric space,

followed by clustering in this space to identify sub-groups of assets that best accentuate a suitable

measure of similarity amongst di�erent assets. Since the Global Smoothing algorithm is closely

related to the sequential primal barrier QP method (see for example Gill et al. (1981) for a more

comprehensive treatment), Section (4.2) reviews this algorithm for solving a classic QP problem

before moving on to the two proposed methods in dealing with the added cardinality constraint.

4.2 Sequential Primal Barrier QP Method

4.2.1 Framework

Null Space Reduction If we ignore cardinality constraint (4.3), then we are left with a simple

linear inequality constrained QP (IQP), which can be solved by using a barrier method

min
x∈Rn

F (x;µ) = c>x+
1
2
xTHx− µ

∑
i

log xi (4.4)

s.t. Ax = b.

The gradient and Hessian are given by

g̃ = c+Hx− µX−1e, H̃ = H + µX−2

where X−2 = diag
(
x−2

1 , x−2
2 , . . . , x−2

n

)
. The KKT system is then given by[

H̃ A>

A 0

][
x∗

−λ∗

]
=

[
−c
b

]
(4.5)
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Note that we have assumed A has full row rank, since m ≤ n, then the imposition of m linearly

independent linear equality constraints on a problem with n variables can be viewed as reducing the

dimensionality of the optimization to n −m. Let Y ∈ R
(
A>
)
, i.e. Y is in the range of A>, and

Z ∈ N (A), i.e. Z is in the null space of A, then (4.4) can be simpli�ed to give

min
xZ∈Rn−m

x>ZZ
> (c+HY x∗Y ) +

1
2
x>ZZ

>HZxZ − µ
∑
xi∈xZ

log xi (4.6)

where the unique decomposition of the n-vector, x is given by

x = Y xY + ZxZ .

Let X−2
Z = diag

(
0, . . . , 0, x−2

Z

)
. If Z>

(
H + µX∗−2

Z

)
Z � 0, then the unique solution to (4.6), x∗Z ,

must satisfy the equations

Z>HZx∗Z = µX−1
Z e︸ ︷︷ ︸

term due to barrier

−Z> (c+HY x∗Y ) , (4.7)

Note that due to the barrier term on the right hand side, the system in (4.7) is clearly nonlinear in

xz, so ruling out the possibility of using a simple conjugate gradient (CG) method.

Base on a similar analysis as the one above, an IQP can be posed as solving a sequence of

unconstrained QP in a reduced space in Rn−m, using a line research method. Let p denote the step

to x∗ from x, so that p = x∗ − x. We can write (4.5) in terms of p to give

g̃ + H̃p = A>λ∗ (4.8)

Ap = −v (4.9)

where −v = Ax− b. Observe that p itself is the solution of an equality-constrained QP,

min
p∈Rn

g̃>p+ 1
2p
>H̃p

s.t. Ap = −v.

Consider the partition x =
[
xB xS

]
in m basic and n−m superbasic variables, together with

corresponding partition12, A =
[
B S

]
for some B ∈ Rm×m, S ∈ Rm×(n−m), and p =

[
pB pS

]
for some pB ∈ Rm×1, pS ∈ R(n−m)×1, then (4.9) can be written as

BpB = v − SpS
12e.g. we could use the pivoting permutation, as part of the QP decomposition, to �nd the full rank square matrix

B.
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and we have [
pB

pS

]
=

[
−B−1v −B−1SpS

pS

]

= −

[
B−1

0

]
v +

[
−B−1S

I

]
pS .

Let

W =

[
B−1

0

]
, Z =

[
−B−1S

I

]
, Q−1 =

[
B S

0 In−m

]
.

Clearly we have the n × (n−m) matrix of reduced-gradient basis, Z ∈ N (A) and the product

AQ =
[
I 0

]
13. We have

p = WpB + ZpS , (4.10)

where the values of pB and pS can be readily determined by the following methods,

. pB : by (4.9) and (4.10), we have Ap = AWpB = −v which simpli�es to pB = −v;

. pS : multiply (4.8) by ZT and using (4.10), we obtain

Z>H̃ZpS = −Z>g̃ − Z>H̃Y pB , (4.11)

which has a unique solution for pS since Z>H̃Z � 0.

If x is feasible (so that v = 0), then pB = 0, p ∈ N (A) and (4.11) becomes

Z>H̃ZpS = −Z>g̃. (4.12)

In general, the reduced-gradient form of Z is not formed or stored explicitly. Instead, the search

direction is computed using vectors of the form Zξ, for some ξ ∈ R(n−m)×1, such that

Zξ =

[
−B−1S

I

]
ξ =

[
uξ

ξ

]

where Buξ = −Sξ, and can be solved using LU-decomposition of B, i.e. uξ = −U−1L−1Sξ.

Similarly, Z>ζ, for some n-vector ζ =
[
ζ1 ζ2

]>
, can be expressed as

Z>ξ =
[
−B−1S I

] [ ζ1

ζ2

]
=

[
uζ1

ζ2

]

where Buζ1 = −Sζ1, and can be solved using LU-decomposition of B, i.e. uζ1 = −U−1L−1Sζ1.

Since these vectors are obtained by solving systems of equations that involve B and B>, thus Z

may be represented using only a factorization (such as the LU-decomposition) of the m×m matrix

B. The proposed algorithm is given in Algorithm 1.

13Note that eY ∈ N (A) only if Y >Z = 0, e.g. when Q is orthogonal.
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Algorithm 1 Null Space QP

[form permutation matrix] P ← via pivoting scheme of the QR decomposition of matrix Ǎ, such

that ǍP = Ã =
[
B̃ S̃

]
, where the full rank square matrix B̃ ∈ Rm×m is simply given by the

partition of Ã.
partition of x̌ into m basic and n−m superbasic variables
Given: µ0, σ, max-outer-iteration, max-CG-iteration
start with feasible value x0, which implies p(0)

B = 0 and remain zero for all subsequent iterations
k ← 1
while k ≤ max-outer-iteration do
H̃k ← H + µ(k)X−2

k

g̃k ← c+Hx− µ(k)X−1
k e

calculate p(k)
S based on (4.12), where Z>H̃kZpS = −Z>g̃k. We solve this linear system with

Tuncated CG Algorithm 3 (setting maximum iteration to max-CG-iteration). Note that rather
than forming Z's explicitly, we use stored LU-decomposition of B for the matrix-vector product
ZpS

p(k) ←
[

0 p
(k)
S

]
[calculate step-length]
if x(k) + p(k) > 0 then
α(k) = 1

else
α(k) = 0.9

end if
[new update]
x(k+1) ← x(k) + α(k)p(k)

k ← k + 1
if ‖g̃k+1‖ − ‖g̃k‖ > −ε then
µ(k+1) ← σµ(k)

else
µ(k+1) ← µ(k);

end if
end while
�nal result is given by x(k∗)P>, where k∗ is the terminating iteration
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Figure 4.2: Null space line-search algorithm result. Top panel: value of barrier parameter, µ, as
a function of iteration. Bottom panel: 1-norm of error. σ is set to 0.8 and initial feasible value,
x0 =

[
0.3 0.5 0.2 0.7 0.3

]>
. Trajectory of the 1-norm error in the bottom panel illustrates

that the algorithm stayed within the feasible region of the problem.

Small Scale Simulated Result Consider the case where

H =


6.97 • • • •
−0.34 8.04 • • •
−0.14 −0.11 7.28 • •
−1.52 −0.44 −0.41 8.24 •
1.70 0.17 0.30 0.07 5.11

 , c =


4.89
2.64
3.40
4.62
3.93


and

A =

 1 1 1 0 0
1 0 0 1 1
0 0 1 0 0

 , b =

 1.0
1.0
0.2

 .
By using the built-in QP solver in R, which implements the dual method of Goldfarb and Idnani

(1982, 1983), we get the optimal solution x∗ =
[

0.688 0.11 0.20 0.31 −0.00
]>

and the cor-

responding objective function value of 7.61. Note the slight violation of the non-zero constraint in

the last variable. Figure 4.2 shows the result of our line search algorithm, which converges to the

same result strictly in the interior of the constrains.

4.2.2 Empirical Analysis

Data Empirical results in this section is based on the daily closing prices for 500 of the most

liquid stocks, as measured by the median 21-day daily transacted volume, traded on the main stock

exchanges in the US, spanning the period between 2008-01-22 to 2009-01-22. The setup of the

mean-variance optimization problem is as follows,
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Figure 4.3: Histogram for mean daily return for 500 most actively traded stocks between 2008-01-22
to 2010-01-22

. H is the variance-covariance matrix for the log returns, based on open-to-close di�erence in

log-prices.

. c is set to equal to the mean of log returns over the sample period, see Figure 4.3;

. a total of two equality constraints are set such that

� weights for stocks with �A� in the �rst alphabet in their ticker name sum to 1/2;

� weights for stocks with �B� in the �rst alphabet in their ticker name sum to 1/2;

. inequality constraints are set such that the vector of 500 weights are larger than -10, i.e.

xi ≥ −10 ∀i.

Result Figure 4.4 shows the result using the built-in R routine that is based on the dual method of

Goldfarb and Idnani (1982, 1983), for the cases with and without the inequality constraint. For the

inequality constrained case, the number of iterations until convergence is set to 30, and the number

of active constraints at solution is set to 29. Compare this with the result based on Algorithm 1,

shown in Figure 4.5, we see that the two results are clearly not identical. This is an artifact of the

iterative routines used in the underlying algorithms used by the two methods.

In terms of processing time, the built-in R function is faster than our algorithm. Figure 4.6 and

Figure 4.7 shows the convergence diagnostics. Table 1 shows diagnostic output from Algorithm 1 at

each outer iteration.

4.3 Solving CCQP with a Global Smoothing Algorithm

Murray and Ng (2008) proposes an algorithm for nonlinear optimization problems with discrete

variables. This section extends that framework, by casting the problem in the portfolio optimization
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Figure 4.4: Optimization output using built-in R routine that is based on the dual method of
Goldfarb and Idnani (1982, 1983). Top Panel: with equality constraint only. Bottom Panel: with
equality and inequality constraints. mix x and max x are the minimum and maximum of the solution
vector x, respectively.
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Figure 4.6: Algorithm 1 convergence diagnostics. Top panel: value of barrier parameter µ; Center
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outer iteration.
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ngrad.r ngrad obj cond cond.r mu step res.pre res.post

1 2.12e-02 2.07e-02 -0.253 7.45e+03 7.81e+03 1.00e-03 74.90 6.21e-16 1.79e-15

2 4.75e-02 4.98e-02 -0.272 7.07e+03 9.92e+03 1.00e-03 20.22 1.79e-15 5.56e-15

3 1.26e-03 1.29e-03 -0.274 7.64e+03 1.45e+04 1.00e-03 6.95 5.56e-15 2.81e-15

4 1.15e-03 1.21e-03 -0.286 1.38e+04 2.40e+04 6.00e-04 13.96 2.81e-15 2.84e-15

5 8.32e-04 8.86e-04 -0.294 2.21e+04 7.06e+04 3.60e-04 13.40 2.84e-15 5.56e-15

6 7.82e-04 8.42e-04 -0.300 3.16e+04 1.61e+05 2.16e-04 11.46 5.56e-15 6.66e-15

7 2.59e-03 2.64e-03 -0.299 7.30e+04 3.29e+05 2.16e-04 6.30 6.66e-15 1.19e-14

8 1.49e-03 1.59e-03 -0.300 3.74e+04 1.92e+05 2.16e-04 7.31 1.19e-14 1.27e-14

9 7.28e-04 8.51e-04 -0.304 4.66e+04 2.96e+05 1.30e-04 7.78 1.27e-14 1.64e-14

10 6.71e-04 8.59e-04 -0.306 5.08e+04 3.49e+05 7.78e-05 9.08 1.64e-14 2.16e-14

11 5.42e-04 8.46e-04 -0.306 4.61e+04 3.92e+05 7.78e-05 5.23 2.16e-14 9.33e-15

12 4.03e-04 7.67e-04 -0.306 3.99e+04 3.99e+05 7.78e-05 6.23 9.33e-15 7.99e-15

13 6.17e-04 8.67e-04 -0.308 4.80e+04 4.75e+05 4.67e-05 4.65 7.99e-15 5.35e-15

14 2.45e-03 2.57e-03 -0.308 1.13e+05 1.62e+06 4.67e-05 2.79 5.35e-15 1.38e-14

15 1.17e-03 1.39e-03 -0.308 3.42e+04 5.16e+05 4.67e-05 5.05 1.38e-14 1.61e-14

16 5.85e-04 8.77e-04 -0.309 3.74e+04 5.22e+05 2.80e-05 3.25 1.61e-14 1.61e-14

17 6.72e-04 9.40e-04 -0.309 9.73e+04 1.48e+06 1.68e-05 0.00 1.61e-14 1.61e-14

18 6.72e-04 9.40e-04 -0.309 9.73e+04 1.48e+06 1.68e-05 0.00 1.61e-14 1.61e-14

19 6.72e-04 9.40e-04 -0.309 9.73e+04 1.48e+06 1.68e-05 0.00 1.61e-14 1.61e-14

20 6.72e-04 9.40e-04 -0.309 9.73e+04 1.48e+06 1.68e-05 0.00 1.61e-14 1.61e-14

21 6.72e-04 9.40e-04 -0.309 9.73e+04 1.48e+06 1.68e-05 0.00 1.61e-14 1.61e-14

Table 7: Nullspace CG algorithm output for the �rst 21 iterations. ngrad.r: norm of reduced
gradient; ngrad: norm of gradient; obj: objective function value; cond: condition number of hessian;
cond.r: condition number of reduced hessian; mu: barrier parameter; step: step length; res.pre:
norm of residual pre CG; res.post: norm of residual post CG; maximum of outer iteration: 20;
maximum of CG iteration: 30.

setting. There is an equivalence of the CCQP problem and that of �nding the global minimizer of a

problem with continuous variables (see for example Ge and Huang, 1989). However, it is insu�cient

to introduce only penalty function to enforce integrability as it risks introducing large numbers of

local minimums which can signi�cantly increase the complexity of the original problem. The idea

of the global smoothing algorithm is to add a strictly convex function to the original objective,

together with a suitable penalty function. The algorithm then iteratively increases the penalty on

non-integrability and decreases the amount of smoothing introduced.

4.3.1 Framework

Here we add the cardinality constraint (4.3), and solve the following mixed integer optimization

problem,

min
x

f (x) = c>x+ 1
2x
>Hx (4.13)

s.t. Ax = b (4.14)

yi ≥ xi ≥ 0 i = 1, . . . , n (4.15)∑
i yi = K yi ∈ {0, 1} (4.16)
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where c, x ∈ Rn×1, H ∈ Rn×n, A ∈ Rm×n, b ∈ Rm×1 and m ≤ n. The transformed problem

becomes:

min
x∈Rn

F (x, y) = f (x) +
γ

2

∑
i

yi (1− yi)︸ ︷︷ ︸
penalty term

−µ
∑
i

(log si + log xi)︸ ︷︷ ︸
smoothing term

(4.17)

s.t.

 A 0 0
0 e> 0
−I I −I


 x

y

s

 =

 b

K

0

 ,
where e ∈ Rn×1 is a column vector of one's, s is the slack variable, γ is the parameter that governs

the degree of penalty on non-integrability, and µ is the parameter that governs the amount of global

smoothing introduced into the problem. Let Ǎ =

 A 0 0
0 e> 0
−I I −I

, x̌ =

 x

y

s

 and b̌ =

 b

K

0

,
then the gradient and Hessian can be expressed as,

ǧ = ∇F (x, y) =



g1 − µ
x1

...

gn − µ
xn

γ
2 (1− 2y1)

...
γ
2 (1− 2yn)
− µ
s1
...

− µ
sn



, Ȟ = ∇2F (x, y) =

 Ȟ11 0 0
0 Ȟ22 0
0 0 Ȟ33



where

g = c+Hx, Ȟ11 = H + diag
(
µ

x2
i

)
, Ȟ22 = diag (−γi) , Ȟ33 = diag

(
µ

s2
i

)
.

An outline of the global smoothing CCQP algorithm is given in Algorithm 2. Algorithm 3 is an

adaptation of the conjugate gradient method that produces a descent search direction and guarantees

that the fast convergence rate of the pure Newton method is preserved, provided that the step length

is used whenever it satis�es the acceptance criteria. The CG iteration is terminated once a direction

of negative curvature is obtained.

4.3.2 Empirical Analysis

Empirical results to illustrate an application of the global smoothing algorithm is based on the daily

closing prices for 500 of the most liquid stocks, as measured by median 21-day daily transacted

volume, traded on the main stock exchanges in the US, spanning the period between 2008-01-22

and 2009-01-22. Algorithm 2 illustrates an implementation of the framework to solve the following
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Algorithm 2 Global Smoothing CCQP

[form permutation matrix] P ← via pivoting scheme of the QR decomposition of matrix Ǎ, such

that ǍP = Ã =
[
B̃ S̃

]
, where the full rank square matrix B̃ ∈ Rm×m is simply given by the

partition of Ã.
partition of x̌ into m basic and n−m superbasic variables
Given µ0, σ, ν and γ0

start with feasible value, x̌0, which implies pB ≡ 0 and remain zero for all subsequent iterations
k ← 1
while not-converged do
H̃k ← P>ȞP and g̃k ← P>ǧ, where xk is simply the �rst n elements of the vector Px̌k and yk
is the second n elements
calculate pS based on (4.12), where we solve the potentially inde�nite Newton system
Z>H̃kZpS = −Z>g̃k based on either the Tuncated CG Algorithm 3, or the Modi�ed Cholesky
Factorization Algorithm 4
pk ←

[
0 pS

]
calculate the maximum feasible step along αM using the backtracking line search method in
Algorithm 5
x̌k+1 ← x̌k + αkpk
k ← k + 1
if ‖g̃k+1‖ − ‖g̃k‖ > −ε then
µk ← σµk
γk+1 ← γk/σ

ν

else
µk+1 ← µk and γk+1 ← γk

end if
end while
[�nal result] x̌k∗P>, where k∗ is the terminating iteration

Algorithm 3 Truncated-CG
while not-reached-maximum-iteration do
if d>j H̃kdj ≤ ξ then
if if j = 0 then
pk ← −g̃k

else
pk ← zj

end if
end if
αj ← r>j rj/d>j eHkdj
zj+1 ← zj + αjdj
rj+1 ← rj + αjH̃kdj
if ‖rj+1‖ < εk then
pk ← zj+1

end if
βj+1 ← r>j+1rj+1/r>j rj
dj+1 ← −rj+1 + βj+1dj

end while
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Algorithm 4 Modi�ed Cholesky Factorization
Given: γ ← max (|aii| : i = 1, 2, . . . , n), ξ ← min (aii : i = 1, 2, . . . , n), εM the relative machine
precision, where aij is the i, j element of the matrix A
β ← max (γ, ξ/√n2−1, εM ), ε > 0
A← H̃k

for l← 1, 2, . . . , n do
µl ← max {|âlj | : j = l + 1, l + 2, . . . , n}
rll ← max

{
ε,
√
|âll|, µl/β

}
ell ← r2

ll − âll
for j ← 1, 2, . . . , n do
rlj ← âlj/rll

end for
for i← 1, 2, . . . , n do
âij ← âij − rljrli

end for
end for

Algorithm 5 Backtracking Line Search (specialized to solve 1 ≤ x ≤ 0
Given: ᾱ > 0, ρ ∈ (0, 1), c ∈ (0, 1), α← ᾱ
while F (x̌k + αkpk) > F (x̌k) + cαg̃>k pk do
α← ρα

end while
αk ← α

speci�c problem,

min
x,y

f (x) = c>x+ 1
2x
>Hx

s.t. yi − xi = si i = 1, . . . , n∑
i yi = K yi ∈ {0, 1}

si ≥ 0

x ≥ 0

min
x∈Rn

F (x, y) = f (x) +
γ

2

∑
i

yi (1− yi)

−µ
∑
i

(log yi + log (1− yi) + log si + log xi)

s.t.

[
0 e> 0
−I I −I

] x

y

s

 =

[
K

0

]
.

Figure 4.8 shows the converged output for K = 250 and Figure 4.9 for K = 100.
While the proposed algorithm is able to solve small to medium scale problems, convergence is

often sensitive to how γ and µ are modi�ed at each iteration. Further research is needed to control

these parameters to ensure consistent convergence performance and to generalize the algorithm to

deal with more general constraints. Therefore, we treat this proposed algorithm as a prototype and

a proof of concept that such a framework can potentially be adapted to solve a CCQP portfolio
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Figure 4.8: Converged output for K = 250. Panel-1: �rst 500 variables are xi, second 500 are yi
and the last 500 are si; Panel-2: histogram of xi; Panel-3: histogram of yi; Panel-4: histogram of si.
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Figure 4.9: Converged output for K = 100. Panel-1: �rst 500 variables are xi, second 500 are yi
and the last 500 are si; Panel-2: histogram of xi; Panel-3: histogram of yi; Panel-4: histogram of si.
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problem. In the next section, we proposed another approach to solve the CCQP, which is both

robust and scales well to the size of the underlying problem.

4.4 Solving CCQP with Local Relaxation Approach

Without loss of generality, we replace the generic constraint Ax ≥ b in (4.2) by an equality constraint∑
i xi = 0, so that it mimics the case of a dollar neutral portfolio. The resulting CCQP problem is

given by

min
x

f (x) = −c>x+ λx>Hx

s.t.
∑
i xi = 0∑

i 1{xi 6=0} = K.

Murray and Shek (2011) proposes an algorithm that explores the inherent similarity of asset

returns, and relies on solving a series of relaxed problems in a reduced dimensional space by �rst

projecting and clustering returns in this space. This approach mimics line-search and trust-region

methods for solving continuous problems, and it uses local approximation to the problem to de-

termine an improved estimate of the solution at each iteration. Murray and Shanbhag (2007) and

Murray and Shanbhag (2006) have used one variation of local relaxation approach to solve a grid-

based electrical substation siting problem, and have demonstrated that the growth in e�ort with

the number of integers is slow with their proposed algorithm vis-à-vis an exponential growth for

a number of commercial solvers. The algorithm proposed here is di�erent to their algorithm in a

number of key areas. One, instead of a prede�ned 2-dimensional grid we project asset returns onto a

multi-dimensional space based on exploring statistical properties of historic returns. Second, instead

of using physical distance, we de�ne the distance metric as a function of factor loading, risk aversion

and expected return. Third, given the typical cardinality relative to the size of the search space and

cluster group size, we cannot assume that the clusters do not overlap, hence we have proposed a

necessary probabilistic procedure to assign cluster members to each centroid at each iteration.

4.4.1 Clustering

Recall that the goal of minimizing portfolio risk is closely related to asset variances and their corre-

lation - our objective is to maximize expected return of the portfolio, while penalizing its variance.

It is intuitive to think that assets from di�erent sectors exhibit di�erent correlation dynamics. How-

ever, empirical evidence seems to suggest this dynamic is weak relative to idiosyncratic dynamic of

stocks both within and across sectors. Figure 4.10 shows the ordered covariance matrix for 50 assets,

5 from each of the 10 sectors de�ned by Bloomberg, such that the �rst group of stocks (JCP, CBS,

..., COH) belong to Consumer Discretionary, the second group of stocks (NHZ, KO, ..., GIS) belong

to Consumer Staples, etc. We see that the covariance matrix does not seem to show any noticeable

block structure that would suggest collective sectoral behavior. Covariance matrices calculated using

di�erent sample periods also con�rm this observation.

Instead of relying on sector de�nition to cluster assets, we could use historic correlation of returns

as a guide to help us identify assets that behave similarly. First we de�ne a distance metric, dij for
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Figure 4.10: Heatmap of covariance matrix for 50 actively traded stocks, over the sample period
2008-01-10 to 2009-01-01. Darker colors indicate correlation closer to 1 and light colors closer to -1.

a pair of assets i and j,

dij =
√

2 (1− ρij), (4.18)

where ρij is the Pearson's correlation coe�cient based on the pairwise price return time series. This

de�nition penalizes negatively correlated stocks more than stocks that are not correlated, which

makes sense as our goal is to group stocks with similar characteristics as measured by the co-

movement of their returns. Using this de�nition of distance metric, we can construct a minimum

spanning tree (MST) (see for example Russell and Norvig (1995)) that spans our asset pairs with

edge lengths given by (4.18). From Figure 4.11, we see that this method has identi�ed some cluster

structures, and veri�ed that the dominant dimension is not along sector classi�cation.

The MST is a two dimensional projection of the covariance matrix. An alternative, higher

dimensional, method is to cluster the assets in a suitably chosen orthogonal factor space spanned

by a more comprehensive set of spanning basis. Given a return matrix, R ∈ RT×N , we aim to

e�ectively project our universe of N asset returns onto an orthogonal k-dimensional space, where

often k � N . We can write

R = PkV
>
k + U,

where Pk ∈ RT×k is the return of our k factors, Vk ∈ RN×k is the factor loadings and U ∈ RT×N is

the matrix of speci�c returns. This reduces the dimension of our problem from N to k, such that

the i-th column of the return matrix R, ri ∈ RT , can be written as a linear combination of the k

factors

ri = v1,ip1 + v2,ip2 + · · ·+ vk,ipk + ui,
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Figure 4.11: A Minimum spanning tree for 50 actively traded stocks, over the sample period 2008-
01-10 to 2009-01-01. Using distance metric de�ned in (4.18). Each color identi�es a di�erent sector.

where vi,j ∈ R is the (i, j) component of the matrix Vk, pi and ui are the i-th column of the matrix P
and U respectively. One method to identify the k factors is by principal component analysis (PCA).

An outline of the procedure can be expressed as follows,

. obtain spectral-decomposition14: 1
TR
>R = V ΛV >, where V and Λ are ordered by magnitude

of the eigenvalues along the diagonal of Λ,

. form principal component matrix: P = RV , and

. �nally take �rst k columns of P and V to give Pk and Vk , known as the principle component

and factor loading matrix, respectively.

Once we have identi�ed the k-dimensional space, then the proposed clustering method works as

follows:

. de�ne a cluster distance metric d (ri, rj) = ‖vi − vj‖2, where vi ∈ Rk and vj ∈ Rk are the i-th
and j-th row of the factor loading matrix Vk.

. �lter outliers in this space by dropping assets with distance signi�cantly greater than the

median distance from the center-of-gravity15 of the k-dimensional space;

14Here we assume columns of R have zero mean.
15The center-of-gravity is de�ned in the usual sense by assigning a weight of one to each asset in the projected

space, then the center is de�ned to be the position where a point mass, equal to the sum of all weights, that balances
the levered weight of the assets.
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Figure 4.12: k-means clustering in a space spanned by the �rst three principal components based
on log returns for 50 actively traded stocks, over the sample period 2008-01-10 to 2009-01-01.

. identify clusters (using for example k-means clustering; see Hastie et al. (2003) for details) in

this metric space.

Figure 4.12 illustrates the proposed clustering method using the returns of 50 actively traded US

stocks. Here we have set the number of clusters to three and have dropped four outliers stocks (FE,

CBS, CTL and PTV) based on the criteria listed above, and then projected the remaining 46 returns

onto a three-dimensional space spanned by the three dominant principal components.

Distance Measure We de�ne the distance measures for an assets, s, in the projected space

relative to an arbitrary reference point, a0, by

dm (s; ao) = σd ‖vs − a0‖2 + (1− σd) (‖c‖∞ − |cs|) , (4.19)

where cs is the s-th element of the vector of expected return, c. The economic interpretation is that

we use the tuning parameter σd to control the trade o� between picking stocks highly correlated

and stocks that have higher expected return. Note that σd = 1 corresponds to the simple Euclidean

distance measure.

Identify Cluster Member Once the initial starting K centroid assets have been identi�ed, the

proposed algorithm identi�es the member assets by the center-of-gravity method, de�ned for the
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i-th cluster as

gi =
V >k x

∗(i)
r∥∥∥x∗(i)r

∥∥∥ , (4.20)

where the vector x∗(i)r corresponds to optimal weights (see relaxed-neighborhood QP in Section 4.4.2)

of assets in the i-th cluster. The member assets are picked according to the degree of closeness to

centroid i, de�ned by the distance measure dm (s; gi) for asset s.
Once the corresponding member assets have been identi�ed for each cluster, the algorithm will

propose a new set of K centroids at the end of each iteration. For the next iteration, new member

assets needed to be calculated for each cluster. The composition of each new cluster clearly depends

on the order that the centroids are picked. For example, clusters A and B could be su�ciently

close in the projected space, such that there exists a group of assets which are equally close to both

clusters. Since assets cannot belong to more than one group, so once cluster A has claimed an asset,

the asset drops out of the feasible set of assets for cluster B.

Let pi be the probability of centroid asset i being picked for cluster assignment, we propose the

following logistic transform to parametrize this probability:

log
pi

1− pi
= αs

( ∣∣x∗o,i∣∣∑
i

∣∣x∗o,i∣∣ − 1
K

)
, (4.21)

where x∗o,i corresponds to the optimal weight (see centroid-asset QP in Section 4.4.2) of the i-th

centroid asset, such that the higher the centroid weight the greater the probability that it will have

a higher priority over the other centroids in claiming its member assets.

4.4.2 Algorithms

Algorithm for identifying an initial set of starting centroids, So There are a number of

possible ways to prescribe the initial set of centroid assets.

. k-means (Algorithm 6)

� form K clusters, where K is the cardinality of the problem, in the projected factor space

spanned by R (Pk). Then in the projected space, identify the set of K centroid-assets,

So ⊂ S, which are stocks closest to the cluster centers (note a cluster center is simply a

point in the projected space, and does not necessarily coincide with any projected asset

returns in this space);

. Successive truncation (Algorithm 7)

� at each iteration we essentially discards a portion of assets which have small weights, until

we are left with the appropriate number of assets in our portfolio equal to the desired

cardinality value.
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Algorithm 6 K-means in factor space
Given: R, K
Ω← 1

TR
>R

[Singluar Value Decomposition] Ω = V ΛV >

Vk ← �rst k columns of V
[Random initialization] m(0)

1 ,m
(0)
2 , ...,m

(0)
K

while not-converged do
for i = 1 to K do
E-Step: C(n)

i =
{
vj :

∥∥∥vj −m(n)
i

∥∥∥ ≤ ∥∥∥vj −m(n)

ĩ

∥∥∥ ,∀ĩ = 1, . . . ,K
}

M-Step: m(n+1)
i = 1˛̨̨

C(n)
i

˛̨̨∑
vj∈C(n)

i
vj

end for
end while

Algorithm 7 Successive truncation
Given: N, I
j ← 0
S0 ← S; n0 ← N ; φ0 ← 0
repeat
[Solve QP] for x∗ where

x∗j = arg min
x

−c>x+ 1
2x
>Hx

s.t. e>x = 0
x ∈ Sj

if arithmetic truncation then
return φj ← max (nj − bN/Ic ,K)

else
return φj ← max (b(1− K/N)njc ,K)

end if
Sj+1 ←

{
s(n), s(n−1), . . . , s(φj)

}
nj+1 = |Sj+1| − φj

until φj = K
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Algorithm for iterative local relaxation In the main Algorithm 8, at each iteration, we solve

a number of small QPs for subsets of the original set of assets, So ⊂ Sr ⊆ S, where Sr is the set of
assets belonging to one of the K clusters identi�ed. The QPs that we solve in the main algorithm

include the following:

. Globally-relaxed QP

min
x

−c>x+ 1
2x
>Hx

s.t. e>x = 0

x ∈ S,

where c and H are the expected return and covariance matrix for the set of assets, S; e is a
column vector of 1's.

. Centroid-asset QP

min
x

−c>o xo + 1
2x
>
o Hoxo

s.t. e>xo = 0

x ∈ So,

where co and Ho are expected return and covariance matrix for the set of centroid assets,

So, only. This gives optimal weight vector x∗o, where x
∗
o,i is the i-th element of this vector

corresponding to i-th centroid asset, so,i.

. Relaxed-neighborhood QP

min
w

−c>r xr + 1
2x
>
r Hrxr

s.t. e>i xr = x∗o,i i = 1, . . . ,K,

xr ∈ Sr,

where ei is a column vector with 1's at positions that correspond to the i-th centroid cluster

assets and are zero everywhere else; cr is the vector of expected returns and Hr is the corre-

sponding variance-covariance matrix of our sub-universe of assets, Sr = ∪Ki=1N (so,i), where
N (so,i) is the set of neighbor assets belonging to the cluster with so,i as the centroid. We

impose the constraint that the sum of weights of the neighbors of the i-th centroid add up to

the centroid weight, x∗o,i.

Algorithm for identifying new centroids Let {mk}k=1,...,K be the number of members in each

of the K clusters. We generate ‖m‖∞ number of centroid proposals based on assets within the same

cluster to give Φ1, . . . ,Φ‖m‖∞ . Φ1 ∈ RK is a vector of the set of closest distances, de�ned by (4.19),

to the centroid; Φ2 is the vector of distances that are second closest, etc. For cluster group k with

mk ≤ ‖m‖∞, we pad the last ‖m‖∞−mk entries with distance of the cluster member that is farthest

away from the centroid in cluster k. Once we have generated the centroid proposals {Φi}i=1,...,‖m‖∞
,

Algorithm 9 then loops over each of the proposals. During each loop, the algorithm replaces the
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Algorithm 8 Local relaxation in projected orthogonal space
Given: αs, σd, Mmin, Mmax, K, η̄, εo, S
x∗ ← solution of globally-relaxed QP
Ξ← ranked vector x∗

So ← initial centroids by Algorithm 7 or by Algorithm 6
while not-converged do

(x∗o, f
∗
o )← solution of centroid-asset QP

Ξ̀← Ξ
while Iε =

{
i :
∣∣x∗o,i∣∣ < εo

}
6= Ø do

for each i ∈ Iε do
s← s̀1, where s =

{
so,i ∈ So :

∣∣x∗o,i∣∣ < εo
}
, and s̀ ∈ Ξ̀ \ So.

Ξ̀← Ξ̀ \ {s̀}
end for
x∗o ← solution of centroid-asset QP

end while
[Generate random-centroid-asset-order, Iõ] Sampling, without replacement, from the index set
Io = {1, 2, . . . ,K} with probability in (4.21)

pi =

(
1 + exp

(
αs

( ∣∣x∗o,i∣∣∑
i

∣∣x∗o,i∣∣ − 1
K

)))−1

S̀ ← S \ So
for {so,i : so,i ∈ So, i ∈ Iõ} do
mi ← max (bMmaxpic ,Mmin)
[Identify mi neighbors of so,i, N (so,i) ⊂ S̀], such that{

s ∈ S̀ :
(
σd
∥∥vs − vso,i∥∥2

+ (1− σd) (‖c‖∞ − |cs|)
)
< r
}
⊂ N (so,i)

|N (so,i)| = mi − 1

S̀ ← S̀ \N (so,i) ,
end for
Sr ←

⋃K
i=1N (so,i)

x∗r ← solution of relaxed-neighborhood QP
S0 ← output of Algorithm 9
if [max-iteration-reached OR max-time-limit-reached] then
break

end if
end while
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Algorithm 9 Identify new centroids
Given: Υ, {gi}i=1,...,K

[Generate centroid proposal list]
for i = 1 to ‖m‖∞ do

Φi ← proposal of K centroid assets with distance ranked i-th closeset based on (4.19)
end for
j ← 1; η ← 1; exit-loop←false
while exit-loop is false do
for i = 1 to K do
so,i ← Φj,i
f ← objective function value of centroid-asset QP
if f < f∗o then
exit-loop←true
break

end if
end for
j ← j + 1
if j > ‖m‖∞ then
if η ≥ η̄ then
goto Algorithm 10

else
Mmax ← bΥηMmaxc
η ← η + 1

end if
end if

end while

current centroids with progressively less optimal proposals, in the sense of larger distance measure

from the cluster centroid assets, and breaks out as soon as there has been an improvement to the

objective function.

If none of the proposals gives a lower objective function value, the algorithm then attempts to

swap centroids with assets from other clusters. The choice of substitution is governed by the expected

returns of the assets, weighted by the magnitude of the relaxed solution from relaxed-neighborhood

QP, to give a vector $ ∈ R
P
imi ,

$ =
[∣∣x∗o,1∣∣ cs∈N(so,1), . . . ,

∣∣x∗o,2∣∣ cs∈N(so,2), . . . , . . . ,
∣∣x∗o,K∣∣ cs∈N(so,K)

]>
,

where cs∈N(so,k) is a row vector consists of the expected returns for assets belonging to the k-th

cluster.

4.4.3 Computational Result

Preparation of Dataset Empirical results in this section are based on two key datasets. The �rst

dataset consists of daily closing prices for 500 of the most liquid stocks, as measure by mean daily

transacted volume, traded on the main stock exchanges in the US, spanning the period between

2002-01-02 to 2010-01-22. The second dataset consists of 3,000 monthly closing prices for actively

traded stocks in the US, spanning the period between 2005-05-31 to 2010-04-30. These two datasets

test the performance of our algorithm under di�erent market environments and for di�erent scales
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Algorithm 10 Swap centroids
k ← 1; q ← ‖Sr‖
while exit-loop is false do
so,k ← $q

f ← objective function value of centroid-asset QP
if f < f∗o then
η ← 0
exit-loop←true

end if
k ← k + 1
if k = K then
q ← q − 1
k ← 1
if q ≤ 0 then
exit-loop←true

end if
end if

end while

of the problem. The results based on the proposed algorithm are compared with those obtained by

the successive truncation algorithm in Algorithm 7 and by the branch-and-cut MIQP solver used in

CPLEX, a leading commercial optimization software.

Cleaning and Filtering We follow a three step procedure to clean, �lter and prepare the datasets

for analysis:

. Recorded price validation. We discard assets that do not have a complete price history over

the whole sample period;

. NAICS sector matching. We purge any asset whose ticker cannot be matched to the latest

North American Industry Classi�cation System (NAICS) sector de�nition. This is in place to

facilitate potentially imposing sectoral constraints.

. PCA outliers detection. We project the returns, de�ned as the di�erence in log-prices, onto a

4-dimensional space spanned by the dominant PCA factors. Any assets with projected return

more than two standard deviations away from the projected median is considered an outlier

asset and dropped.

Factorization of Covariance Matrix For the dataset with 3,000 assets, since N � T so the

covariance matrix from raw returns is rank de�cient. We take the necessary step of factorizing the

raw covariance matrix by using the �rst four dominant PCA factors. This ensures that the resulting

covariance matrix is both full rank and well conditioned. The �rst four factors together capture

35.07% of the total variance for the 500 stock case, and 38.15% for the 3,000 stocks case.

4.4.4 Algorithm Benchmarking

Successive Truncation Figure 4.13 shows the result for the fully relaxed problem (i.e. without

the cardinality constraint), ordered by value of the optimal weights. Positive weights mean that we

95



www.manaraa.com

−2

−1

0

1

2

3

4

Tickers

W
ei

gh
t

H
C

C
T

R
K

D
D

T
D

C
R

Y
D

G
X

A
C

O
IB

O
C

W
T

T
V

A
R

S
P

LS
U

S
T

R
D

O
W

A
N

AT K
E

I
M

D
U

D
N

R
M

S
M

S
T

F
C

S
T

C
W

D
R

C
T

B
T

R
S

T
P

E
G

H
LX

H
A

L
D

R
A

M
W

W
W

W
T

N
Y

P
K

E
G

N
T

X
E

T
M

ID
C

C
JO

E
E

M
R

R
H

I
B

V
F

S
B

P LZ
S

T
B

A V
II

C
T

T
A

M
LN

P
F

G
S

H
S

T
M

K
S

R
C

H
D

M
T

X
C

C
F

Figure 4.13: Fully relaxed (i.e. without cardinality constraint) QP solution for 500 actively traded
US stocks (not all tickers are shown) sampled over the period from 2002-01-02 to 2010-01-22, with
dollar neutral constraint.

go long those assets and negative weights correspond to shorting those assets. As we impose the con-

straint,
∑
i xi = 0, so the net dollar exposure of the result portfolio is zero. This is one interpretation

of a market neutral portfolio. An alternative de�nition of market neutrality requires neutralizing

speci�c factors of the net portfolio exposure, by e�ectively taking into account correlation between

di�erent assets.

We apply the successive arithmetic truncation algorithm given in Algorithm 7 to CCQP. Table 8

gives the result for the 500-choose-15 (i.e. solving a 500 asset problem with cardinality equal to 15)

case. It can be seen that if the number of iterations is set to one-tenth of the size of the universe, i.e.

by discarding a large portion of stocks from the feasible set at each iteration, the method is able to

obtain a result quickly. However, as we will show later, if we need a higher degree of optimality, this

simple method often fails to deliver. Also, note that it is not guaranteed that the more iterations we

use, the better the solution. Table 9 shows the result for the 3,000-choose-15 case, we see that the

algorithm does not give monotone improvement of the objective function. For comparison, Table

10 shows the result for geometric truncation for the 3,000-choose-15 case. Again, we notice that

increasing the number of iterations does not necessarily increase optimality.

Both of these truncation methods are widely used in practice. Although there is clearly no

dispute on the speed of this heuristic algorithm, we later show that it can be signi�cantly inferior

than algorithms that are able to explore the solution space more e�ectively, at only a small cost of

execution time.

Throughout the rest of this paper, we refer to successive arithmetic truncation as simple succes-
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Number of
Iterations

Objective
Value

Time
(sec)

Optimal
Assets

10 -0.00615 0.246 AGII BIG CPO ETH FBP FICO HCC IGT

LPNT PFG RYN SRT TAP UIS WPP

20 -0.00637 0.455 AGII BWA CDE CPO DYN ETH FICO HCC

NWBI PFG RYN SRT TAP UIS WPP

50 -0.00629 0.832 AGII BWA CDE CPO EMC ETH FICO HCC

IGT PFG RYN SRT TAP UIS WPP

100 -0.00635 1.677 AGII BWA CDE CPO DYN EMC ETH FICO

HCC PFG RYN SRT TAP UIS WPP

500 -0.00638 8.073 AGII BWA CDE CPO ETH FICO HCC IGT

PFG RYN SRT TAP TRK UIS WPP

Table 8: Successive arithmetic truncation method result for 500 of the most liquid US stocks, with
cardinality, K = 15.

Number of
Iterations

Objective
Value

Time
(sec)

Optimal
Assets

10 -12.08450 33 AOL AONE ART CFL CFN CIE CIT CVE

DGI DOLE EDMC MJN SEM TLCR VRSK

100 -12.13756 210 AOL AONE ART CFL CFN CIE CIT CVE

DGI DOLE MJN SEM TLCR TMH VRSK

300 -12.23406 561 AOL AONE ART CFL CFN CIE CIT CVE

DGI DOLE MJN NFBK SEM TLCR VRSK

500 -12.23406 929 AOL AONE ART CFL CFN CIE CIT CVE

DGI DOLE MJN NFBK SEM TLCR VRSK

1,000 -11.72131 1,839 AOL ART CFL CFN CIE CIT CVE DGI

DOLE MJN NFBK RA SEM TLCR VRSK

3,000 -11.72131 5,536 AOL ART CFL CFN CIE CIT CVE DGI

DOLE MJN NFBK RA SEM TLCR VRSK

Table 9: Successive arithmetic truncation method result for 3,000 of the most liquid US stocks, with
cardinality, K = 15.

Number of
Iterations

Objective
Value

Time
(sec)

Optimal
Assets

10 -12.37960 19 AOL AONE ART CFL CFN CIE CIT CVE

DGI DOLE LOPE MJN SEM TLCR VRSK

100 -11.72131 63 AOL ART CFL CFN CIE CIT CVE DGI

DOLE MJN NFBK RA SEM TLCR VRSK

300 -11.72131 161 AOL ART CFL CFN CIE CIT CVE DGI

DOLE MJN NFBK RA SEM TLCR VRSK

500 -11.72131 290 AOL ART CFL CFN CIE CIT CVE DGI

DOLE MJN NFBK RA SEM TLCR VRSK

1,000 -11.72131 507 AOL ART CFL CFN CIE CIT CVE DGI

DOLE MJN NFBK RA SEM TLCR VRSK

3,000 -11.72131 1259 AOL ART CFL CFN CIE CIT CVE DGI

DOLE MJN NFBK RA SEM TLCR VRSK

Table 10: Successive geometric truncation method result for 3,000 of the most liquid US stocks with
cardinality constraint, K = 15.
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Figure 4.14: Projection onto a 4-dimensional space spanned by the �rst four dominant PCA factors,
based on daily returns for the most liquid 500 US traded stocks, sampled over the period from
2002-01-02 to 2010-01-22. Symbols with di�erent colors correspond to di�erent cluster groups.

sive truncation, unless otherwise stated.

Local Relaxation and CPLEX MIQP Each of the six panels in Figure 4.14 represents a 2-

dimensional view of the 4-dimensional PCA projection of the returns of our 500 assets. In the same

�gure, we have also shown the initial K clusters, indicated by di�erent colors and symbols. The

local relaxation method that solves a CCQP with cardinality equal to 15 may be initialized with

the cluster centroids assets, iteratively solve for relaxed but smaller QPs by including a subset of

the cluster members, then followed by moving to a new set of centroids with strictly increasing

optimality.

A prototype of the local relaxation algorithm has been implemented in R running in a 64-Bit

Linux kernel. The solution of the relaxed QP's required by the new algorithm and the truncation

method are found using the QP solver in R, which is based on Goldfarb and Idnani (1982). To

help assess the performance of our proposed algorithm, we present three solved problems, each with

di�erent universe sizes and cardinality values. The sets of parameters used in the algorithm for these

three problems are given in Table 11.

For comparison, we have implemented CPLEX v12 in a 64-Bit Linux kernel using the CPLEX

C++ API to access the built-in MIQP solver, which is based on the dynamic search branch-and-cut

method (IBM, 2010). The code is set to run in parallel using up to eight threads on a Quad Intel

Core i7 2.8GhZ CPUs with access to a total of 16GB of memory. Table 12 shows the parameter

settings used. Table 13 shows the result, for the 500-choose-15 case, with a run-time cut-o� set to
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(500, 15) (3000, 15) (3000, 100)

Mmin 5 5 3
Mmax 30 30 10
σd 0.2 0.2 0.2
αs 80 80 80
ε0 1× 10−5 1× 10−5 1× 10−5

η̄ 10 10 10
Υ 1.1 1.2 1.8

Table 11: Parameter setup for local relaxation method. (500, 15) means solving a 500 universe
problem with cardinality equal to 15.

Parameter Setting

Preprocessing true

Heuristics RINS at root node only

Algorithm branch-and-cut

MIP emphasis balance optimality and feasibility

MIP search method dynamic search

Branch Variable Selection automatic

Parallel mode deterministic, using up to 8 threads

Table 12: CPLEX parameter settings (with the rest of the parameters set to their default values).

1,200 sec. Figure 4.15 shows the performance comparison between CPLEX and the new algorithm

as a function of run-time. We see that the local relaxation method is able to obtain a better solution

than CPLEX right from the beginning, and it strictly dominates CPLEX throughout the testing

period.

Next, we assess the scalability of the new algorithm, by switching to the larger dataset which

consists of 3,000 actively traded stocks. As before, we �rst project the factored covariance matrix

onto a 4-dimensional PCA space and then identify the initial K clusters based on k-means, as

shown in Figure 4.16. Table 14 shows the computational result. We see that the local relaxation

method is able to reach a signi�cantly better result than CPLEX quickly. Figure 4.17 shows the

performance comparison of the local relaxation method verses CPLEX for the 3,000 choose 15 case,

which illustrates dominance of the proposed algorithm over CPLEX for a prolonged period of time.

Local Relaxation with warm start One additional feature of the local relaxation algorithm

is that it can be warm started using the result from another algorithm or from a similar problem

Method Objective
Value

Time
(sec)

Optimal
Assets

CPLEX -0.00796 1200 AOI AYI CCF CPO DD DST DY FBP

HCC LRCX MRCL NST TMK UIS WPP

Local
Relaxation

-0.00870 1200 AOI AVT AYI BIG BPOP CCF CPO CSCO

DST HCC HMA IBM MCRL TAP ZNT

Table 13: Computational result for the 500 asset case with cardinality, K = 15. For CPLEX and
the local relaxation algorithm, we have imposed a maximum run time cuto� at 1,200 seconds.
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Figure 4.15: CPLEX versus local relaxation method performance comparison for the 500 asset case,
with cardinality, K = 15, both are cold started.

Method Objective
Value

Time
(sec)

Optimal
Assets

Successive
Truncation

-12.08425 36 AOL AONE ART CFL CFN CIE CIT CVE

DGI DOLE EDMC MJN SEM TLCR VRSK

CPLEX -12.30410 25200 AOL AONE ART CFL CFN CIE CIT CVE

DGI DOLE MJN SEM TLCR VECO VRSK

Local
Relaxation

-12.76492 7200 AOL AONE ARST ART BPI CFL CFN CIE

CIT CVE DGI DOLE MJN SEM TLCR

Table 14: Computational result for the 3,000 asset case, with cardinality, K = 15. Successive
truncation is done over 10 iterations.
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Figure 4.16: Projection onto a four dimensional space spanned by the �rst four dominant PCA
factors, based on monthly returns for the most liquid 3,000 US traded stocks, sampled over the
period from 2005-05-31 to 2010-04-30. Symbols with di�erent colors correspond to di�erent cluster
groups.
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Figure 4.17: CPLEX versus local relaxation method performance comparison for the 3,000 asset
case, with cardinality constraint K = 15, both cold started.

directly. We have seen that the simple successive truncation algorithm could often lead to a good

local minimum with little computational cost. To take advantage of this, we propose warm starting

the local relaxation algorithm using the result from successive truncation as the initial centroid

assets. Since local relaxation method is strictly feasible and monotone improving, we can set a time

limit and take the result at the end of the period. This way, we are guaranteed a solution no worse

than the one obtained by successive truncation. This hybrid approach gives the best combination

and can be shown to be signi�cantly more e�cient than a warmed started CPLEX solve.

Figure 4.18 shows the result, solving a 500 asset CCQP with K = 15, by warm starting the local

relaxation method with output from successive truncation, based on 20 iterative truncations. It can

be seen that the new algorithm dominates the CPLEX result.

Figure 4.19 shows the result, solving a 3,000 asset CCQP with K = 100, by warm starting the

local relaxation method with output from successive truncation. Note that at least for this instance,

CPLEX has never quite managed to �nd a minimum that comes close to the one obtained by the

proposed algorithm, even after it has been left running for 35 hours.

Warm starting CPLEX with Local Relaxation It is reasonable to conjecture that the

strength of the local relaxation algorithm is in its ability to explore structure of the problem, and

hence in identifying the sub-group of assets within which the optimal solution set lies. To see whether

the branch-and-cut method in CPLEX is able to improve on the solution from the new algorithm

once the algorithm has identi�ed a sub-asset group, we propose the following test:
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Figure 4.18: CPLEX versus local relaxation method performance comparison for the 500 assets
universe, with cardinality constraint, K = 15; Both methods are warm started using the solution of
successive truncation over 20 iterations. Maximum run-time is set to one hour.
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Figure 4.19: CPLEX versus local relaxation method performance comparison for the 3,000 assets
universe, with cardinality constraint, K = 100; Both methods are warm started using the solution
of arithmetic successive truncation over 20 iterations. Maximum run-time is set to seven hours.
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Figure 4.20: Apply CPLEX MIQP to the union of the cluster groups identi�ed by local relaxation
algorithm upon convergence (the beginning of the �at line in Figure 4.19). Maximum run-time is
set to one hour.

. solve the CCQP with local relaxation algorithm;

. once the algorithm has reached a stationary group of assets (here stationary refers to the

observation that the cluster groups do not change over certain number of iterations), stop the

algorithm and record the union of assets over all identi�ed cluster groups;

. solve the CCQP to optimality only for this group of assets using CPLEX.

To illustrate the idea, we apply the above procedure to the result for the 3,000-choose-100 case. In

Figure 4.19 we see that the algorithm appears to have converged after 15,916 seconds. We take a

union of the assets in the 100 clusters from the local relaxation algorithm, then feed these assets

into CPLEX. Figure 4.20 shows the output from CPLEX at each iteration. It can be seen that the

CPLEX branch-and-cut algorithm takes almost 20 minutes to reach a level close to the result given

by the local relaxation method, and never quite reach it within the run-time limit of one hour.

Mean-variance e�cient frontier The set of optimal portfolios formed based on di�erent risk

tolerance parameters is known as frontier portfolios, in the sense that all portfolios on the frontier

are optimal, given the speci�c risk tolerance of an investor. Therefore, a mean-variance optimizing

agent will only choose frontier portfolios. Figure 4.21 shows this e�cient frontier for our universe of

3,000 US stocks. We observe that, in-sample, the CCQP solutions are strictly dominated by those

based on QP - a consequence of the cardinality constraint which cuts o� parts of the feasible space.

We observe that this domination increases as we decrease the cardinality of the problem, as larger
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Figure 4.21: Mean-variance e�cient frontiers for a 3,000 asset universe. QP is the frontier without
the cardinality constraint. CCQP is the frontier in presence of cardinality. To produce the frontier
for CCQP, we warm-start the local relaxation algorithm, based on the successive truncation solution,
and set a maximum run time limit of 252,000 seconds for the case where K = 100 and 3,600 second
for the case where K = 15.
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parts of the feasible space becomes inaccessible to the CCQP. However, in practice, the robustness

of forming a portfolio with smaller subset of assets with higher expected returns can often lead to

better out of sample performance.
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5 Conclusion

In this thesis, new approaches to model the three key statistical and algorithm aspects of optimal

portfolio construction have been presented.

For the �rst aspect, we have proposed a complete model for returns and realized measures of

volatility, xt, where the latter is tied directly to the conditional volatility ht. The motivation is

to include high frequency data in a rigorous way in a classic GARCH framework that has so far

been used predominately in dealing with less frequently sampled data, hence without having to be

concerned with market microstructure noise. We have demonstrated that the model is straight-

forward to estimate and o�ers a substantial improvement in the empirical �t, relative to standard

GARCH models. The model is informative about realized measurement, such as its accuracy. The

proposed framework induces an interesting reduced-form model for {rt, ht}, that is similar to that

of a stochastic volatility model with leverage e�ect. Our empirical analysis can be extended in a

number of ways. For instance, including a jump robust realized measure of volatility would be an

interesting extension, because Bollerslev, Kretschmer, Pigorsch, and Tauchen (2009) found that the

leverage e�ect primarily acts through the continuous volatility component. Another possible exten-

sion is to introduce a bivariate model of open-to-close and close-to-open returns, as an alternative

to modeling close-to-close returns, see Andersen et al. (2011). The Realized GARCH framework is

naturally extended to a multi-factor structure. Say m realized measures and k latent volatility vari-

ables. The Realized GARCH model discussed in this thesis corresponds to the case k = 1, whereas
the MEM framework corresponds to the case m = k. Such a hybrid framework would enable us to

conduct inference about the number of latent factors, k. We could, in particular, test the one-factor

structure, conjectured to be su�cient for the realized measure used in this paper, against the two-

factor structure implied by MEM. For the extension of Realized GARCH to multivariate settings, we

could explore more general frameworks by loosening the assumption that volatility and correlation

operate at di�erent time scales.

The increasing role that high frequency �nance plays in the market has also motivated the

part of the thesis on expected return forecast. The proposed model is based on self-excited point

process augmented by trade size and limit order book information. The motivation for incorporate

these two potential marks is based on underlying economic intuition. First, the trade size mark

acts as a mechanism to di�erentiate large orders that is more likely to induce price movement

than small noise trading of insigni�cant impact. Second, information from the limit order book

adds an extra dimension to gauge supply-demand imbalance of the market. Game theoretic utility

balancing argument aside, a more sell order loaded book will signal that more investors are looking

for an opportunity to liquidate or sell short a position, and vice versa for a buy order loaded book.

Nowadays, sophisticated execution algorithms contribute to over 60% of total trading volume on the

NYSE, with similar dominance in other markets. These algorithms aim to minimize market impact

of large orders, by slicing them into smaller units and then submitting to di�erent layers of the

limit order book at optimal times. The proposed frameworks in this paper are tested using the LSE

order book data and result suggests that the inclusion of limit order book information can lead to a

more robust estimation when compared with the basic bivariate model, as de�ned by goodness-of-�t

of the model implied distribution to the empirical distribution of the inter-arrival times of the bid

and ask side market orders. As for trade size, result suggests that it could have an adverse e�ect

on model performance. This could be attributable to the fact that most orders, before they reach
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the exchange, have been sliced by execution algorithms so that the size is close to the median daily

average, so as to minimize signaling e�ect. Hence a large portion of the �uctuation around the

median volume is noise, which lowers the overall signal to noise ratio.

The �nal key aspect of the thesis is portfolio optimization with cardinality constraints. The

NP -hard nature of cardinality constrained mean-variance portfolio optimization problems has led

to a variety of di�erent algorithms with varying degrees of success in reaching optimality given

limited computational resources and under the presence of strict time constraints in practice. The

computational e�ort needed to be assured of solving problems of the size considered here is truly

astronomical and way beyond the performance of machines envisaged. However, solving a problem

exactly is of questionable valued over that of obtaining a "near" solution. The proposed local

relaxation algorithm exploits the inherent structure of the objective function. It solves a sequence

of small, local, quadratic-programs by �rst projecting asset returns onto a reduced metric space,

followed by clustering in this space to identify sub-groups of assets that best accentuate a suitable

measure of similarity amongst di�erent assets. The algorithm can either be cold started using the

centroids of initial clusters or be warm started based on the outputs of a previous result. Empirical

result, using baskets of up to 3,000 stocks and with di�erent cardinality constraints, indicates that

the proposed algorithm is able to achieve signi�cant performance gain over a sophisticated branch-

and-cut method.
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A Appendix of Proofs

Proof. [Proposition 19] The �rst result follows by substituting log xt = ϕ log ht+ξ+wt and log r2
t =

log ht + κ + vt into the GARCH equation and rearranging. Next, we substitute log ht = (log xt −
ξ − wt)/ϕ, log r2

t = (log xt − ξ − wt)/ϕ+ κ+ vt, and multiply by ϕ, and �nd

log xt−ξ−wt = ϕω+
∑p∨q

i=1
(βi+αi)(log xt−i−ξ−wt−i)+ϕ

∑q

j=1
γj log xt−j+ϕ

∑q

j=1
αj(κ+vt−j)

so with πi = αi + βi + γiϕ, we have

log xt = ξ(1− β• − α•) + ϕκα• + ϕω +
p∨q∑
i=1

πi log xt−i +wt −
∑p

i=1
(αi + βi)wt−i + ϕ

∑q

j=1
αjvt−j .

When ϕ = 0, the measurement equation shows that log xt is an iid process.

Proof. [Lemma 22] First note that

∂g′t
∂λ

=
(

0, ḣt−1, . . . , ḣt−p, 0p+q+1×q

)
=: Ḣt−1,

Thus from the GARCH equation, h̃t = λ′gt, we have that

ḣt =
∂g′t
∂λ

λ+ gt = Ḣt−1λ+ gt =
p∑
i=1

βiḣt−i + gt.

Similarly, the second order derivative, is given by

ḧt =
∂(gt + Ḣt−1λ)

∂λ′

=
∂gt
∂λ′

+ Ḣt−1 +
Ht−1

∂λ′
λ

= Ḣ ′t−1 + Ḣt−1 +
p∑
i=1

βi
∂ḣt−i
∂λ′

=
p∑
i=1

βiḧt−i + Ḣ ′t−1 + Ḣt−1.

For the starting values we observe that regardless of (h0, . . . , hp−1) being treated as �xed or as a

vector of unknown parameters, we have ḣs = ḧs = 0. Given the structure of ḧt this implies ḧ1 = 0.
When p = q = 1 it follows immediately that ḣt =

∑t−1
j=0 β

jgt−j . Similarly we have

ḧt =
t−1∑
j=0

βj(Ḣt−1−j + Ḣt−1−j) =
t−2∑
j=0

βj(Ḣt−1−j + Ḣt−1−j)

where Ḣt = (03×1, ḣt, 03×1) and where the second equality follows by Ḣ0 = 0. The results now
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follows by

t−2∑
i=0

βiḣt−1−i =
t−2∑
i=0

βi
t−1−i−1∑
j=0

βjgt−1−i−j

=
t−2∑
i=0

βi
t−i−2∑

k−i−1=0

βk−i−1gt−k

=
t−2∑
i=0

t−1∑
k=i+1

βk−1gt−k

=
t−1∑
k=1

kβk−1gt−k.

Proof. [Proposition 23] Recall that ut = x̃t−ψ′mt and h̃t= g′tλ. So derivative with respect to h̃t are

given by

∂zt

∂h̃t
=

∂rt exp(− 1
2 h̃t)

∂h̃t
= −1

2
zt so that

∂z2
t

∂h̃t
= −z2

t ,

u̇t =
∂ut

∂h̃t
= −ϕ+

1
2
ztτ
′ȧt,

üt =
∂u̇t

∂h̃t
=

∂
(
−ϕ+ 1

2ztȧ(zt)′τ
)

∂h̃t
= −1

4
τ ′
(
ztȧt + z2

t ät
)
.

So with `t = − 1
2{h̃t + z2

t + log(σ2
u) + u2

t/σ
2
u} we have

∂`t
∂ut

= 2
ut
σ2
u

and
∂`t

∂h̃t
= −1

2

{
1 +

∂z2
t

∂h̃t
+
∂u2

t/∂h̃t
σ2
u

}
= −1

2

{
1− z2

t +
2utu̇t
σ2
u

}
.

Derivatives with respect to λ are

∂zt
∂λ

=
∂zt

∂h̃t

∂h̃t
∂λ

= −1
2
ztḣt

∂ut
∂λ

=
∂ut

∂h̃t

∂h̃t
∂λ

= u̇tḣt

∂u̇t
∂λ′

= ütḣ
′
t

∂`t
∂λ

=
∂`t

∂h̃t
ḣt = −1

2

{
1− z2

t +
2utu̇t
σ2
u

}
ḣt.
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Derivatives with respect to ψ are

∂ut
∂ξ

= −1,
∂u̇t
∂ξ

= 0, and
∂`t
∂ξ

=
∂`t
∂ut

∂ut
∂ξ

= −2
ut
σ2
u

,

∂ut
∂ϕ

= −h̃t,
∂u̇t
∂ϕ

= −1, and
∂`t
∂ϕ

=
∂`t
∂ut

∂ut
∂ϕ

= −2
ut
σ2
u

h̃t,

∂ut
∂τ

= −at,
∂u̇t
∂τ

=
1
2
ztȧt and

∂`t
∂τ

=
∂`t
∂ut

∂ut
∂τ

= −2
ut
σ2
u

at.

Similarly, ∂`t
∂σ2

u
= − 1

2 (σ−2
u − u2

tσ
−4
u ). Now we turn to the second order derivatives.

−2
∂2`t
∂λ∂λ′

= ḣt

{
−∂z

2
t

∂λ′
+

2
σ2
u

(
u̇t
∂ut
∂λ′

+ ut
∂u̇t
∂λ′

)}
+ (1− z2

t +
2ut
σ2
u

u̇t)
∂ḣt
∂λ′

= ḣt

{
z2
t +

2
σ2
u

(
u̇2
t + utüt

)
ḣ′t

}
+ (1− z2

t +
2ut
σ2
u

u̇t)ḧt.

Similarly, since ∂zt
∂ψ = 0 we have

−2
∂2`t
∂λ∂ξ

=
∂(1− z2

t + 2ut
σ2
u
u̇t)ḣt

∂ξ
= 2ḣt

(
∂ut
∂ψ′

u̇t
σ2
u

+
ut
σ2
u

∂u̇t
∂ξ

)
= 2ḣt

(
− u̇t
σ2
u

+ 0
)

−2
∂2`t
∂λ∂ϕ

=
∂(1− z2

t + 2ut
σ2
u
u̇t)ḣt

∂ϕ
= 2ḣt

(
∂ut
∂ϕ

u̇t
σ2
u

+
ut
σ2
u

∂u̇t
∂ϕ

)
= 2ḣt

(
−h̃t

u̇t
σ2
u

− ut
σ2
u

)
−2

∂2`t
∂λ∂τ ′

= 2ḣt

(
∂ut
∂τ ′

u̇t
σ2
u

+
ut
σ2
u

∂u̇t
∂τ ′

)
= 2ḣt

(
−a′t

u̇t
σ2
u

+
ut
σ2
u

1
2
ztȧt

)
,

so that
∂2`t
∂λ∂ψ′

=
u̇t
σ2
u

ḣtm
′
t +

ut
σ2
u

ḣtb
′
t, with bt = (0, 1,−1

2
ztȧ
′
t)
′.

∂2`t
∂λ∂σ2

u

= −1
2

∂(1− z2
t + 2ut

σ2
u
u̇t)ḣt

∂σ2
u

=
utu̇tḣt
σ4
u

∂2`t
∂ψ∂ψ′

= − 1
σ2
u

mtm
′
t

∂2`t
∂ψ∂σ2

u

= −1
2

(−2ut
σ4
u

)mt =
ut
σ4
u

mt

∂2`t
∂σ2

u∂σ
2
u

= −1
2

(
−1
σ4
u

+ 2
u2
t

σ6
u

)
=

1
2
σ2
u − 2u2

t

σ6
u

.

Proof. [Proposition 26] We note that

ht = exp

( ∞∑
i=0

πi(µ+ γwt−1)

)
= e

µ
1−π

∞∏
i=0

E exp
(
γπiτ(zt−i)

)
E
(
exp

{
πiγut−i

})
,

h2
t = exp

(
2
∞∑
i=0

πi(µ+ γwt−1)

)
= e

2µ
1−π

∞∏
i=0

E exp
(
2γπiτ(zt−i)

)
E
(
exp

{
2πiγut−i

})
,

112



www.manaraa.com

and using results, such as

E

( ∞∏
i=0

exp
{
πiγut−i

})
=
∞∏
i=0

E
(
exp

{
πiγut−i

})
=
∞∏
i=0

e
π2iγ2σ2

u
2 = e

P∞
i=0

π2iγ2σ2
u

2 = e
γ2σ2

u/2

1−π2 ,

we �nd that

Eh2
t

(Eht)2
=

e
2µ

1−π
∏∞
i=0 E exp

(
2γπiwt−1

)
e

2µ
1−π

∏∞
i=0 {E exp (γπiwt−1)}2

=

( ∞∏
i=0

1− 2πiγτ2√
1− 4πiγτ2

)
e
P∞
i=0

4π2iγ2τ2
1

2(1−4πiγτ2)

e
2
P∞
i=0

π2iγ2τ2
1

2(1−2πiγτ2)

e−
2γτ2
1−π

e−2
γτ2
1−π

e
2γ2σ2

u
1−π2

e
γ2σ2

u
1−π2

=

( ∞∏
i=0

1− 2πiγτ2√
1− 4πiγτ2

)
e
P∞
i=0

2π2iγ2τ2
1

(1−4πiγτ2)
− π2iγ2τ2

1
(1−2πiγτ2) e

γ2σ2
u

1−π2

=

( ∞∏
i=0

1− 2πiγτ2√
1− 4πiγτ2

)
e

P∞
i=0

π2iγ2τ2
1

(1−6πiγτ2+8π2iγ2τ2
2 ) e

γ2σ2
u

1−π2

where the last equality uses

2π2iγ2τ2
1

(1− 4πiγτ2)
− π2iγ2τ2

1

(1− 2πiγτ2)
=

2π2iγ2τ2
1 (1− 2πiγτ2)− π2iγ2τ2

1 (1− 4πiγτ2)
(1− 4πiγτ2)(1− 2πiγτ2)

=
π2iγ2τ2

1

(1− 4πiγτ2)(1− 2πiγτ2)
=

π2iγ2τ2
1

(1− 6πiγτ2 + 8π2iγ2τ2
2 )
.

Recall that

E(r4
t )

E(r2
t )2

= 3

( ∞∏
i=0

1− 2πiγτ2√
1− 4πiγτ2

)
exp

{ ∞∑
i=0

π2iγ2τ2
1

1− 6πiγτ2 + 8π2iγ2τ2
2

}
exp

{
γ2σ2

u

1− π2

}
.

For the �rst term on the right hand side, we have

log
∞∏
i=0

1− 2πiγτ2√
1− 4πiγτ2

'
ˆ ∞

0

log
1− 2πxγτ2√
1− 4πxγτ2

dx

=
1

log π

{ ∞∑
k=1

(2γτ2)k

k2
− 1

2
(4γτ2)k

k2

}
(1− 2k−1)

=
1

log π

∞∑
k=1

(2γτ2)k

k2
(1− 2k−1)

=
γ2τ2

2

{
1 + 8

3γτ2 + 7(γτ2)2 + 96
5 (γτ2)3 + 496

9 (γτ2)4 + · · ·
}

− log π
.

The second term can be bounded by

γ2τ2
1

1− π2
≤
∞∑
i=0

π2iγ2τ2
1

1− 6πiγτ2 + 8π2iγ2τ2
2

≤ γ2τ2
1

1− π2

1
1− 6πγτ2

.

So the approximation error is small when γτ2 is small.
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Proof. [Proposition 30] Starting from the assumption that the following SDE is well de�ned

dλt = β (ρ (t)− λt) dt+ αdNt,

then solution for λt takes the form

λt = c (t) +
ˆ t

0

αe−β(t−u)dNu

where

c (t) = c (0) e−βt + β

ˆ t

0

e−β(t−u)ρ (u) du.

Verify by Ito's lemma on eβtλt

eβtλt = c (0) + β

ˆ t

0

eβuρ (u) du+
ˆ t

0

αeβudNu

βeβtλtdt+ eβtdλt = βeβtρ (t) dt+ αeβtdNt

dλt = β (ρ (t)− λt) dt+ αdNt.

Taking the limit we obtain

lim
t→∞

c (t) = lim
t→∞

{
c (0) e−βt + β

ˆ t

0

e−β(t−u)ρ (u) du
}

= lim
t→∞

β

´ t
0
eβuρ (u) du
eβt

= lim
t→∞

ρ (t)

Treating ρ (t) as a constant ρ (t) ≡ µ, then we have

c (t) = c (0) e−βt + β

ˆ t

0

e−β(t−u)ρ (u) du

= c (0) e−βt + µe−βt
(
eβt − 1

)
= µ+ e−βt (c (0)− µ)

Note that if we set c (0) ≡ µ then the process is simply

λt = µ+ α

ˆ t

0

e−β(t−u)dNu.

Therefore we can think of µ as the long run base intensity, i.e. the intensity if there has been no

past arrival.
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Proof. [Proposition 32] Since the parameters are bounded, we have

L
(1)
T (µ1, β11, β12, α11, α12) = −

ˆ T

0

µ1dt+
∑
ti<t

ˆ T

0

α11e
−β11(t−ti)dt+

∑
tj<t

ˆ T

0

α12e
−β12(t−tj)dt


+
ˆ T

0

log

µ1 +
∑
ti<t

α11e
−β11(t−ti) +

∑
tj<t

α12e
−β12(t−tj)

 dN1 (t)

= −µ1T −
α11

β11

∑
ti<T

(
1− e−β11(T−ti)

)
− α12

β12

∑
tj<T

(
1− e−β12(T−tj)

)

+
∑
ti<T

log

µ1 + α11

∑
ti′<ti

e−β11(ti−ti′ ) + α12

∑
tj′<ti

e−β12(ti−tj′)

 .

We can recursively express

R11 (i) =
i∑

i′=1

e−β11(ti−ti′ )

= e−β11(ti−ti−1)
i−1∑
i′=1

e−β11(ti−1−ti′ )

= e−β11(ti−ti−1)

(
e−β11(ti−1−ti−1) +

i−2∑
i′=1

e−β11(ti−1−ti′ )

)
= e−β11(ti−ti−1) (1 +R11 (i− 1)) .

Now let j∗ = sup {j : tj ≤ ti} and j∗−1 = sup {j : tj ≤ ti−1} , again we can recursively express

R12 (i) =
i∑

j′=1

e−β12(ti−tj′)

= e−β12(ti−tj∗) + e−β12(ti−tj∗−1) + · · ·+ e
−β12

“
ti−tj∗−1

”
+

j∗−1∑
j′=1

e−β12(ti−tj′)

=
∑

{j′:ti−1≤tj′<ti}
e−β12(ti−tj′) + e−β12(ti−ti−1)

j∗−1∑
j′=1

e−β12(ti−1−tj′)

= e−β12(ti−ti−1)R12 (i− 1) +
∑

{j′:ti−1≤tj′<ti}
e−β12(ti−tj′).

Similarly for L(2)
T , R22 and R21.

Proof. [Proposition 33] It follows directly the proof above, by considering the following log-likelihood
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function:

L
(1)
T (µ1, β11, β12, α11, α12) = −

ˆ T

0

µ1dt+
∑
ti<t

ˆ T

0

α11
w1i

w̄1
e−β11(t−ti)dt+

∑
tj<t

ˆ T

0

α12
w2i

w̄2
e−β12(t−tj)dt


+
ˆ T

0

log

µ1 +
∑
ti<t

α11
w1i

w̄1
e−β11(t−ti) +

∑
tj<t

α12
w2i

w̄2
e−β12(t−tj)

 dN1 (t)

+
∑
ti<T

log

µ1 + α11

∑
ti′<ti

w1i

w̄1
e−β11(ti−ti′ ) + α12

∑
tj′<ti

w2i

w̄2
e−β12(ti−tj′)


where w1i and w2j are the trade size for buy and sell orders at time ti and tj , respectively.
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